

EFFICIENT OCCLUSION CULLING

AND
NON-REFRACTIVE TRANSPARENCY RENDERING

FOR
INTERACTIVE COMPUTER VISUALIZATION

POON Chun-Ho
M. Phil. THESIS

A dissertation submitted to
the University of Hong Kong

in partial fulfillment of the requirements for
the degree of Master of Philosophy

The University of Hong Kong

ii

August 2000

iv

Acknowledgement
I would like to thank my supervisor, Dr. Wenping Wang for his advises

and support. Throughout my graduate studies, Dr. Wang has always

directed and enlightened my research.

In particular, I would also thank Mr. Dominic Cheng for his contributions

and many discussions during the formative phase of this work.

Moreover, I would thank my family and Mandy Cheuk for their support

and encourage throughout the years.

The last but not the less, thanks go to my groupmates of Computer

Graphics laboratory in the Department of Computer Science and

Information Systems, K. B. Cheung, Y. K Choi, Y. L. Leung and K. H.

Yeung, for their support and joy.

v

Declaration
I hereby declare that the dissertation, submitted in partial fulfillment of

the requirements for the degree of Master of Philosophy and entitled

“Efficient Occlusion Culling and Non-Refractive Transparency Rendering

for Interactive Computer Visualization”, represents my own work and has

not been previously submitted to this or any other institution for any

degree, diploma and other qualification.

POON Chun-Ho

Abstract of thesis entitled

Efficient Occlusion Culling and Non-Refractive Transparency
Rendering for Interactive Computer Visualization

submitted by

POON Chun-Ho

for the degree of Master of Philosophy

at The University of Hong Kong
in August 2000

Hidden surface removal and non-refractive transparency rendering are

two fundamental problems for interactive visualization. Hidden surface

removal helps to identify the hidden primitives, bypass their rendering

processes, so as to reduce the workload of graphics engine and provide an

interactive frame rate. Without the distortion from refraction, non-

refractive transparency rendering gives more insight of the interior

structure of geometric models. This research is aimed at studying these

critical problems.

Exact hidden surface removal is usually implemented at pixel level, such

as z-buffering, in order to achieve the image precision. It is

computationally power demanding. A conservative algorithm that finds a

minimal superset of visible primitives in a short time is considered as the

most suitable approach for interactive visualization. One significant

technique that makes use of occlusion relation among the primitives of the

model, and culls a significant amount of invisible primitives at different

viewpoints quickly, is studied and devised to an occlusion culling

algorithm.

In this thesis, we present two algorithms to improve occlusion culling for a

highly occluded virtual environment. The first is a novel method to select

occluders with multiple criteria at pre-processing stage for static

environment, using the idea of the minimum occluder set (MOS). The

MOS of an occludee is the minimal set of primitives that occludes the

occludee. The second is an efficient occlusion culling algorithm using the

opacity map (OM) and sparse depth map (SDM), which are applied to the

spatial hierarchy of the whole model at each frame at run-time.

A common method for non-refraction transparency rendering is

interpolated transparency. Interpolated transparency calculates the

resultant intensity by linearly interpolating the corresponding intensities

of two pixel fragments. The main disadvantage of interpolated

transparency is that, when there are more than two pixel fragments, the

graphics pipeline has to apply pair-wise interpolations in a sorted

visibility order. However, finding visibility order at object space is a

complex task, especially for a self-penetrating model.

Another approach is screen door transparency. Screen door transparency

generates a set of two dimensional masks that represents the different

levels of opacity. The pixels of the masks have only two states, which

determine whether they are visible or not. At higher opacity level, the

corresponding mask contains less filled pixels. Though this technique is

order invariant, the correctness of resultant opacities depends heavily on

the size of mask and the distribution of pixels inside each mask. An

improved screen door transparency rendering is presented, that applies a

simple and fast mask generation algorithm and is feasible to be

implemented at sub-pixel level.

The algorithms mentioned above have been implemented and applied to

different experimental tests and a learning toolkit for medical student

called “Virtual Brain”. A significant speedup and a high accurate order

invariant transparency rendering have been observed.

vi

Contents
ACKNOWLEDGEMENT... IV

DECLARATION...V

CONTENTS.. VI

LIST OF FIGURES..VIII

LIST OF TABLES...XI

1 INTRODUCTION..1
1.1 BACKGROUND .. 1
1.2 DIFFICULTIES .. 5

1.2.1 Occlusion Culling ... 5
1.2.2 Non-Refractive Transparency ... 7

1.3 CONTRIBUTIONS .. 7
1.4 OVERVIEW OF THIS THESIS.. 8

2 RELATED WORK ...9
2.1 HIDDEN SURFACE REMOVAL.. 9
2.2 NON-REFRACTIVE TRANSPARENCY RENDERING................................. 10

3 OCCLUSION CULLING...13
3.1 OVERVIEW ... 13
3.2 MINIMUM OCCLUDER SET ALGORITHM.. 15

3.2.1 Construction of Occluder Stack... 15
3.2.2 Generation of Minimum Occluder Set 17
3.2.3 Scoring and Selecting... 19

3.3 OCCLUSION CULLING... 19
3.3.1 Opacity Map ... 20
3.3.2 Overlap Test ... 22
3.3.3 Sparse Depth Map ... 23
3.3.4 Depth Comparison ... 25

4 NON-REFRACTIVE TRANSPARENCY RENDERING26
4.1 OVERVIEW ... 26
4.2 PRECISE MASK GENERATION ... 28

4.2.1 Binary Tre Approach – Pixel Tree Maske 28
4.2.2 Error Comparison .. 30
4.2.3 Computational Complexity.. 33
4.2.4 Feasibility... 34

vii

4.3 TABULAR PIXEL MASK GENERATION.. 34
4.3.1 Structure of Mask Table .. 34
4.3.2 Mask Generation by Table Rolling.. 35
4.3.3 Neighborhood Error Compensation .. 37
4.3.4 Computational Complexity.. 39

5 EXPERIMENTS AND APPLICATIONS ..43
5.1 EXPERIMENTAL RESULT... 43

5.1.1 Occlusion Culling on A Walkthrough System 43
5.1.2 Tabular Pixel Mask Generation with Random Test Data........ 50

5.2 APPLICATION PERFORMANCE – VIRTUAL BRAIN 52
5.2.1 Occlusion Culling ... 52
5.2.2 Tabular Pixel Mask Generation .. 55

6 VIRTUAL BRAIN ...60

7 CONCLUSION AND FUTURE WORKS..62

8 REFERENCES..64

9 APPENDIX..67
9.1 CHICAGO CITY MODEL... 67
9.2 VIRTUAL BRAIN SCREEN SNAPSHOT... 68

viii

List of Figures
Figure 1: The principal of screen door transparency. 5
Figure 2: The occlusion culling algorithm using opacity map acts as a fast

filter to cull a large portion of hidden primitives in the model database.
.. 14

Figure 3: The idea of MOS. The primitives and their labels are shown in
the box above. The shaded rectangle is the image of an occludee. The
left and middle figures show two MOS (ABC and ACD) of the same
occludee, while the one on right shows the wrong selection for MOS, as
either B or D is redundant... 15

Figure 4: Occluder stack and combination table. 17
Figure 5: (a) The back buffer for rendering the occluders. The grey area is

covered by occluders. (b) The bitmap of the occluders. (c) The opacity
map, and the shading showing the usage of opacity function. 21

Figure 6: One row segment of the sparse depth map. It is the top view of
an occludee (the grey rectangular box), and some occluders (the black
lines). The two black dots mark the local farthest pixels (with the
locally largest depth values) of this segment, called the peaks. 25

Figure 7: The process flow of screen door transparency rendering. An
enlarged frame buffer is used, and all opaque objects are rendered first.
Then, transparent objects are rendered with masked rasterization.
Finally, the frame buffer is shrunk back to its original size for visual
output. .. 27

Figure 8: Examples of white noise masks and pixel tree masks. The binary
tree structure of pixel tree masks are also shown................................ 30

Figure 9: Comparison of white noise masks and pixel tree masks............ 31
Figure 10: A violation of binary partition to ancestors by an intra-

quantization error.. 33
Figure 11: Structure of mask table. .. 35
Figure 12: An example of tabular mask generation................................... 37
Figure 13: An example of neighborhood error compensation. 38
Figure 14: Frame rate and culling percentage of different occluder

selection methods. PS stands for the criterion of projected size, FH
stands for the criterion of first-hit. ... 44

ix

Figure 15: The top view of model. The light grey boxes are outside the view
frustum, the dark grey boxes are culled by occluders and the black
boxes are conservatively visible. From the left to right, the figures
show the cases (a) projected size, (b) MOS and (c)) first-hit criteria
respectively... 45

Figure 16: Performances of occlusion culling with different routes. Nil
represents that no culling is applied. VF represents that view frustum
culling is applied. OM represents that occlusion culling with opacity
map and sparse depth map is applied. PC means occlusion culling with
pixel-wise comparison.. 48

Figure 17: Performances of occlusion culling with different occluder
selection criteria for the best case route. PS, MOS and FH represent
the criteria of projected-size, minimum occluder set and first-hit,
respectively... 49

Figure 18: (a) Performances of occlusion culling using opacity map and
MOS algorithm at different resolutions, 512×512, 768×768 and
1024×1024, (b) The result of view frustum. .. 49

Figure 19: Results of white noise mask, tabular pixel mask with and
without neighborhood error compensation for 16×16 sized mask. 51

Figure 20: Results of white noise mask, tabular pixel mask with and
without neighborhood error compensation for 32×32 sized mask. 52

Figure 21: Screen snapshots of occlusion culling algorithm. The colorful
interior primitives are detected to be invisible, and culled.................. 53

Figure 22: Performance of Occlusion Culling algorithm in "Virtual Brain".
OC stands for Occlusion Culling while NIL stands for brute force
approach. .. 54

Figure 23: The left picture applies general alpha blending without
visibility sorting, thus shows an incorrect opacity. The right picture
applies screen door transparency and clearly shows that the blue organ
is between the red and the green ones.. 55

Figure 24: The left picture shows some interior primitives that give a
confusing visual output, while the right one only shows the outermost
layer of the organs, and provides a clear understanding. 56

Figure 25: Visual outputs of alpha blending with and without visibility
sorting, white noise mask, pixel tree mask and tabular pixel mask. .. 59

Figure 26: A birdeye view of the test model, which is composed of thirty
copies of a Chicago city model and contains 300,540 polygons in total.
.. 67

Figure 27: Screen snapshots of "Virtual Brain". The project is ongoing to
import the whole body! .. 68

x

xi

List of Tables
Table 1: Lists of pixels for filled and empty row entries and their

corresponding splitting orders... 39
Table 2: Computational complexities of white noise, pixel tree and tabular

pixel mask generations. ... 40
Table 3: Comparison of computational complexities of the A-buffer

algorithm and tabular pixel mask generation for pixel and divided
region. R stands for the frame buffer size, DR is the size of a divided
region, m is the number of transparent objects and n is the mask size.
.. 42

Table 4: Summary of the experiments and applications............................ 43

Chapter 1. Introduction

1 Introduction

 1

1.1 Background
Interactive visualization is one of the major applications of computer

graphics.

Hidden surface removal and non-refractive transparency rendering are

two well known fundamental problems. They are still valuable research

topics because of fast growing data size and complexity. These demands

mainly come from the interactive visualization of architectural model,

scientific and medical dataset and walkthrough of outdoor scene. Hidden

surface removal helps to identify the hidden primitives, bypass their

rendering processes so as to reduce the workload of graphics engine, and

provide an interactive frame rate. Non-refractive transparency rendering

outputs a correct amount of luminance that transfers through several

transparent objects without consideration of optical refraction. Without

the distortion from refraction, non-refractive transparency rendering gives

more insight of the interior structure of geometric model, such as medical

dataset, which is important for scientific visualization and pathological

analysis. This research is aimed at studying these two problems and

applying two novel techniques for interactive visualization.

Exact hidden surface removal is usually implemented at pixel level, such

as z- buffering [2, 6], in order to achieve the image precision. It compares

the depth value of the incoming fragment and the current one in the frame

buffer at each pixel, and only keeps the closest one. It is computationally

power demanding, and requires hardware implementation for interactive

display. Another approach applies a visibility determination at primitive

(or grouped primitives) level. At this level, an exact solution is also

feasible, that makes use of spatial subdivision, but the overhead of

Chapter 1. Introduction 2

visibility determination is high as well [13, 27, 28, 32]. Moreover, further

subdivision of primitives is often necessary, that increases the overhead at

the same time. A conservative algorithm that finds a minimum superset of

visible primitives in a short time is considered as the most suitable

approach for interactive visualization [7, 8, 17, 21, 35, 40]. One significant

approach that makes use of occlusion relation among the primitives of the

model, and culls a significant amount of invisible primitives at different

viewpoints quickly, is studied and devised to an occlusion culling

algorithm.

An occlusion culling algorithm consists of two processes, selection of

occluders and occlusion culling. An occluder is a primitive among the

whole model, which is lain before other primitives at certain view point. If

the data or model is assumed not to be changed, it is a static model

environment. The selection of occluders will be run at the pre-processing

stage, therefore a computational consuming but highly effective algorithm

is allowed. On the other hand, a simple method for selection of occluders

will be applied for dynamic environment. In this thesis, we present the

following algorithms for the occlusion culling:

1. a novel method to select occluders with multiple criteria at pre-

processing stage for static environment, using the idea of the

minimum occluder set (MOS). The MOS of an occludee is the

minimal set of primitives that occludes the occludee.

2. an efficient occlusion culling algorithm using the opacity map (OM)

and sparse depth map (SDM), which are applied to the spatial

hierarchy of the whole model at each frame at run-time.

Though we perform occluder selection using the minimum occluder set,

the culling part makes no assumption about the model and occluders, and

can therefore be carried out along with occluders selected with any other

criteria.

Chapter 1. Introduction 3

I I

A common method for non-refraction transparency is interpolated

transparency [11]. Interpolated transparency calculates the resultant

intensity by linearly interpolating the two corresponding intensities of

pixel fragments. For example, let 1 and 2 be the intensities of two pixel

fragments P1 and P2, where P1 is in front of P2 at certain view point. The

coefficient k1, range from 0.0 to 1.0, represents the opacity value of P1. The

combined intensity I is calculated as below.

I = k1 I1 + (1 - k1) I2

The main disadvantage of interpolated transparency is that the

correctness only holds for two pixel fragments. When there are more than

two pixel fragments, the graphics pipeline has to apply pair-wise

interpolations in a sorted visibility order. However, the visibility order at

object space is a complex computation task, and even worse for self-

penetrating model.

Interpolated transparency is further accelerated by alpha channel and

commonly regarded as alpha blending [30]. Since alpha blending provides

a precise visual effect, there are several literatures [5, 20, 22, 38] to

provide order invariant algorithm, by using A-buffer or multi-pass

rendering.

Another approach is screen door transparency. Screen door transparency

[12, 26] generates a set of two dimensional masks, that represent the

different levels of opacity. The pixels of the mask have only two states, and

determine whether they are visible or not. At highly transparent object,

the corresponding mask contains fewer filled pixels. Using the masks, we

will render the transparent objects with masked rasterization. If there are

two or more transparent objects, their masks are stacked together one by

one with depth comparison. Therefore, some pixels will be covered, but

some are still visible finally. If the mask size is infinite, the portions of

visible pixels from different objects should be the same as alpha blending.

Chapter 1. Introduction 4

Though this technique does not require a visibility order, the correctness

of opacities depends heavily on the size of the masks and the distribution

of pixels inside each mask. Moreover, a distracting pattern will occur if

screen door transparency is applied at pixel level.

We give an example to show the principal of screen door transparency in

Figure 1. We have three masks, with the alpha values of 0.5, 0.5 and 0.25

correspondingly. We also assume that their visibility order is mask0,

mask2 and mask1. The first row shows their individual masking pixels. We

then stack them together according their depth order in the second row.

The third row shows the resultant masks. We observe that the portion of

visible pixels has the same effect as the resultant alpha blending.

Chapter 1. Introductionntroduction 5

 5

 mask0, α0 = 0.5 mask1, α1 = 0.5 mask2, α2 = 0.25

 single mask

stacking masks
with depth
comparison

 resultant mask

 mask0 mask1 mask2
alpha blending 0.5 (1-α0)×(1-α2)×α1

= 0.1875
(1-α0)×α2 = 0.125

No. of visible pixels /
mask size

8/16 = 0.5 3/16 = 0.1875 2/16 = 0.125

Figure 1: The principal of screen door transparency.

An improved screen door transparency rendering, that applies a simply

and fast mask generation algorithm and is feasible to be implemented at

sub-pixel level, is presented as another contribution of this research.

A learning tool kit for medical student called “Virtual Brain”, that applies

both the occlusion culling and non-refractive transparency rendering

mentioned above will be introduced in this thesis as well.

1.2 Difficulties
1.2.1 Occlusion Culling
In general, the performance of hidden surface removal has a combined

factor of culling percentage and computation cost. An exact hidden surface

removal has the highest culling percentage but large computational time.

Chapter 1. Introduction 6

For the purpose of interactive visualization, we apply a conservative

occlusion culling, that means we take a trade off between the

computational time and an acceptable culling percentage.

The culling percentage depends on the quantity and quality of the

occluders selected. As a single occluder rarely covers other primitives

wholly, we usually choose a small portion of primitives grouped as an

occluder set. For simplicity, the primitives are not in the occluder set are

called occludees, though their roles are potential occludees indeed, since

they will be tested against occlusion at run time. Even in a static

environment, we need different occluder sets at different view points.

To select more occluders, we may reach a higher culling percentage.

However, this also increases the computation time of culling. On the other

hand, if we only apply a small amount of occluders, the culling percentage

may be too low, and has no significant reduction of rendering time.

Therefore, we define the optimal set of occluders is the set of primitives

giving the maximum ratio of its culling percentage to its computation cost.

The general occluder selecting criteria consider four properties of a

primitive. They are the size or projected size, first hit, redundancy and

computation cost of the primitive. The former two criteria are typically

used to determine good occluders. However a primitive with a large

projected size may have low depth complexity and incomplete coverage,

and that first-hit primitives usually form a super set of the optimal set.

Moreover, they do not take into account the combined gain with neighbor

occluders. These criteria only give an approximation of optimal occluder

set, and there is a challenge to find out the minimal set of primitives that

gives the highest culling percentage.

The culling algorithm usually involves a lot of floating point calculations

for an atomic operation. If an environment consists of thousands of

primitives, the computation time is not acceptable. More considerations

Chapter 1. Introduction 7

about hierarchical data grouping and simplification of atomic operation

are required to fulfill the narrow time slot of real time display.

1.2.2 Non-Refractive Transparency
The visual effect of screen door transparency depends on the size of mask,

and the distribution of filled pixels. The size of mask limits the number of

opacity level, and also affects the error in the case of stacking pixel masks

for several transparent objects. The output of stacked pixel masks is also

regarded as higher order opacity. In our approach, we apply screen door

transparency at sub-pixel level, and we render the scene with general

frame buffer. The size of frame buffer bounds the size of mask and output

window. If the mask size is too large, the output window will be small, and

vice verse. Moreover, in order to provide a direct implementation on the

cutting edge graphics engine [25] with sixteen sub-pixel sampling, we have

to keep the mask be reasonably small, such as sixty four pixels.

Since the mask is small, the number of erroneous pixels becomes

significant for higher opacity order. A systematic mask generation is

important to compute the coverage mask with minimum error. An

algorithm is presented in [26], which gives precise masks with minimum

error. However, its complexity order is 2m, where m is the number of

transparent objects. In practice, the computation time is too long for

interactive display if we have tens of transparent objects.

1.3 Contributions

1. A novel method to select occluders with multiple criteria for static

geometric data, using the idea of the minimum occluder set (MOS).

The MOS of an occludee is the minimal set of primitives that

occludes the occludee.

Chapter 1. Introduction 8

2. An efficient occlusion culling algorithm using the opacity map (OM)

and sparse depth map (SDM), which are applied to spatial

hierarchy of the whole model at run-time.

3. A fast visibility order independent transparency rendering

algorithm, which applies the screen-door transparency at subpixel

level.

4. An application called “Virtual Brain”, that supports interactive

visualization of the surface-based data model of human organs on

affordable PC platform and is used for computer-based anatomy and

pathology teaching tool.

1.4 Overview of This Thesis
In this thesis, we shall briefly discuss related works of hidden surface

removal and non-refractive transparency rendering in section 2. The

details of occlusion culling including the minimum occluder set algorithm,

the occlusion culling algorithm using opacity map and sparse depth map

will be presented in sections 3. In section 4, mask generation of screen

door transparency and its relative consideration are given. The

experiments and applications of the algorithm mentioned above will be

described and analyzed in section 5. The thesis concludes in section 6.

Chapter 2. Related Work

2 Related Work

 9

2.1 Hidden Surface Removal
Hidden surface removal is a fundamental problem in computer graphics.

The conventional z-buffer algorithm is implemented in hardware or

software [2, 6] that yields exact visibility information by pixel-wise

comparisons of depth values of every primitive.

The binary space partitioning (BSP) tree algorithm [13, 28], which refines

the work in [32], determines visible primitives in a static environment

from an arbitrary viewpoint. After building the BSP tree, one can have a

linear query response of visibility sorting for the whole set of primitives.

Based on probabilistic geometry, an efficient and randomized algorithm

for hidden surface removal is presented in [27]. Further research in

computational geometry on randomized algorithms for maintaining a BSP

tree for a dynamic model has been conducted [1, 36], which, however, does

not lead to practical results.

The potentially visible set (PVS) [21, 35] is designed for indoor

architectural walkthrough systems. It divides the entire model into cells,

and computes cell-to-cell visibility at the pre-processing stage. Combined

with a view cone, one can obtain a tight bound for the visible primitives

(eye-to-cell visibility) at run-time.

For densely occluded scenes, hierarchical z-buffer visibility [14] is

exploited to speedup the conventional depth value comparison during

rasterization process. With z-pyramid, this method allows quick

termination of depth comparison for the nodes of octree hierarchy far away

from the viewpoint. It performs efficiently when is implemented in

hardware. Hierarchical polygon tiling [15] combines z-pyramid to further

Chapter 2. Related Work
 10

reduce the rasterization time with triage coverage masks. It traverses the

convex polygons in front-to-back order, and culls off polygons that are

covered in image hierarchy.

The occlusion culling algorithm in [7, 8] computes the separating and

supporting planes for each pair of occluders and the nodes of the model

hierarchy. If the viewpoint is found inside the supporting frustum, then its

corresponding node is considered as completely occluded. The algorithm

takes the advantage that frustum is constant and needs to be computed

only once for static models. However, it is relatively computationally

consuming, especially with a floating point implementation. Another

occlusion culling algorithm [17] applies shadow frusta that are extended

from the viewpoint, and uses several large occluders as bases, and then

culls off object nodes which are inside the frusta. This approach is limited

with the number and the shape of occluders. Later, the same authors

proposed a visibility culling algorithm using hierarchical occlusion maps

(HOM) [40]. Our approach is closely related to this work. The main

innovations of HOM are occluder fusion and efficient usage of conventional

hardware acceleration.

The problem of exact visibility sorting of geometric objects without the

help of hardware z-buffer is addressed in [34]. Instead of using

conventional 3D rendering, it produces a sequence of layered images from

a set of geometric parts, and uses them to compose the final image. This

approach does not demand fast 3D graphics hardware, and relies mainly

on general computation and 2D image operations.

2.2 Non-Refractive Transparency Rendering
There are two major approaches for non-refractive transparency rendering,

they are alpha blending and screen door transparency. Alpha blending [30]

is the widely accepted method and has well supported from hardware

alpha channel. However, it requires to blend the pixel fragments pair-wise

in a far-to-near order. In practice, it is difficult to find the visibility order

Chapter 2. Related Work
 11

in real time. Therefore, several researches extend the usage by providing

order invariant methods.

The A-buffer [5] is one major direction for order invariant alpha blending.

It stores all fragments of every pixel in a depth-sorted order, and the

resultant intensity of each pixel is simply weighted interpolation according

to the order. Though the storage space can be saved by merging the

fragments that come from the same primitive and overlapped in depth, it

still has an unbounded storage requirement. An extended hardware

architecture is proposed in [18], which requires a small fixed amount of

storage. To limit the usage of storage, it merges the fragments that are

very close in their depth-values. There are some more improvement issues

in this literature, but the details will not be given here.

Another approach is multi-pass based transparency rendering [22, 38].

The multi-pass based techniques only keep an opaque pixel map and a sort

depth pixel map. The algorithm first renders all the opaque objects and

stores their intensities and depth values into the opaque pixel map. Then,

it renders all the transparent objects into the sort depth pixel map, and

only keeps the fragment, that is the closest to the one in the opaque pixel

map. The opaque pixel map now blends with the sort depth pixel map. In

this pass, one transparent object is resolved. The operation repeats for the

remaining transparent objects until all of them are resolved. Obviously,

the maximum number of passes is the maximum number of transparent

layers among any pixels. Although it provides an order invariant alpha

blending, the rendering time of multi-pass is not suitable for interactive

visualization.

A hybrid method [20] keeps a buffer of constant number of image layers,

such as four layers. It follows the approach of multi-pass based technique

for the first four closest layers. If there are more fragments coming, the

buffer overflows. We composite these four layers into one, and free the

remaining three layers to find the next three closest fragments repeatedly.

Chapter 2. Related Work
 12

The reason for multi layered buffer is based on the observation of the

overflow happening at a low chance, and most of the common cases can be

resolved within the number of image layers.

Screen door transparency is not a new method, but it seems to be a

supplementary approach in the past. Since it is closely related to the

supersampling implementation of hardware, some issues [2, 16, 25, 31] are

given to address it as architectural features. There is only a few pin-

pointing literatures [11, 12]. A detailed discussion of screen door

transparency has been raised in [26]. It explores the higher order opacity

of using different types of pixel masks adapted from digital halftoning [3,

10, 19, 23, 24, 37], and presents a new systemic algorithm. The algorithm

gives a set of less erroneous pixel mask, but its complexity order is 2m,

where m is the number of masks or transparent layers. Our approach is

aimed to reduce its complexity order, and make it be applicable to an

interactive application.

Chapter 3. Occlusion Culling

3 Occlusion Culling

 13

In this chapter we describe the whole process of occlusion culling,

including MOS algorithm that helps to select an effective and efficient

occluders, and the occlusion culling algorithm which uses opacity map and

sparse depth at run time. We first show the overview of the whole process

of occlusion culling, and then we further explain the details of MOS and

occlusion culling algorithms.

3.1 Overview
The aim of occlusion culling is to cull a significant amount of invisible

primitives at different viewpoints in real time. To reduce the overhead, we

first divide the entire model into hierarchical bounding volume, by

constraining that the leave nodes of the tree contain at most 256

primitives. Our approach makes use of occluders that are selected

carefully in the pre-processing stage, to cull a large portion of hidden

nodes of the hierarchical bounding volume tree at run-time. Figure 2

shows the process flow of the rendering pipeline integrating this approach.

model
database

occlusion culling
with OM

model
database

occluder
database

less than 5%
model database

final
image

hardware z-buffer
algorithm

Chapter 3. Occlusion Culling
 14

Figure 2: The occlusion culling algorithm using opacity map acts as a fast filter to cull a large
portion of hidden primitives in the model database.

At the pre-processing stage, we construct the occluder database for certain

grid points of the whole environment, using the minimum occluder set

algorithm. The minimum occluder set is a minimal set of primitives that

occlude one occludee. Note that an occludee may have many different

minimum occluder sets. We compute the minimum occluder sets only for

the occludees with more than 20 primitives. After grouping and sorting,

the optimal set of occluders can be found.

At run-time, the algorithm performs the following tasks at each frame:

1. To query the occluder database, and retrieve the occluder list from the

grid point nearest to the current viewpoint.

2. To render the retrieved occluders off-screen by conventional graphics

hardware with frame and depth buffers. As we only need the image

bitmap and depth value of the occluders, this rendering process is

optimized by ignoring light and material setting. The resolution

applied can be lower than the final display.

3. The resulting buffer contents are used to construct the opacity map and

sparse depth map, respectively.

4. Using the opacity map and sparse depth map, we test for occlusion

recursively with the node’s projected image. The occlusion culling

consists of two dimensional overlap tests and depth comparisons. The

two dimensional overlap test is enhanced by using only three integer

additions or subtractions, while the depth comparison is carried out

sparsely.

5. Finally, the nodes not culled in the occlusion culling step are regarded

as conservatively visible and fed into the hardware z-buffer algorithm

for exact visibility determination.

Chapter 3. Occlusion Culling on Culling
 15

 15

3.2 Minimum Occluder Set Algorithm 3.2 Minimum Occluder Set Algorithm
As mentioned before, a single occluder selection criterion, such as the size

or projected size, first-hit, redundancy or computation cost, has its own

weakness and does not consider the combined gain of culling percentage

with neighbor occluders. We define the optimal set of occluders to be the

set of primitives giving the maximum ratio of its culling percentage to its

computation cost. These criteria fail to give the combined culling

percentage of the whole set of occluders, and only provide a rough

approximation. In contrast, our scheme tries to find the minimum set of

primitives that occludes an occludee, as shown in Figure 3. It chooses a set

of primitives at one time, instead of picking only one primitive. Therefore

it leads to more efficient elimination than those occluders only yield

incomplete coverage. With a suitable scoring scheme, we can find the

optimal set of occluders at a given viewpoint. The MOS algorithm has

three major components: construction of occluder stack, generation of

MOS for each occludee, and calculation of the score for each MOS. We pick

the MOS with the highest score, and keep checking on redundancy.

As mentioned before, a single occluder selection criterion, such as the size

or projected size, first-hit, redundancy or computation cost, has its own

weakness and does not consider the combined gain of culling percentage

with neighbor occluders. We define the optimal set of occluders to be the

set of primitives giving the maximum ratio of its culling percentage to its

computation cost. These criteria fail to give the combined culling

percentage of the whole set of occluders, and only provide a rough

approximation. In contrast, our scheme tries to find the minimum set of

primitives that occludes an occludee, as shown in Figure 3. It chooses a set

of primitives at one time, instead of picking only one primitive. Therefore

it leads to more efficient elimination than those occluders only yield

incomplete coverage. With a suitable scoring scheme, we can find the

optimal set of occluders at a given viewpoint. The MOS algorithm has

three major components: construction of occluder stack, generation of

MOS for each occludee, and calculation of the score for each MOS. We pick

the MOS with the highest score, and keep checking on redundancy.

- D - C - B - A

ABC ABCD

ACD

Figure 3: The idea of MOS. The primitives and their labels are shown in the box above. The
shaded rectangle is the image of an occludee. The left and middle figures show two MOS
(ABC and ACD) of the same occludee, while the one on right shows the wrong selection for
MOS, as either B or D is redundant.

Figure 3: The idea of MOS. The primitives and their labels are shown in the box above. The
shaded rectangle is the image of an occludee. The left and middle figures show two MOS
(ABC and ACD) of the same occludee, while the one on right shows the wrong selection for
MOS, as either B or D is redundant.

3.2.1 Construction of Occluder Stack 3.2.1 Construction of Occluder Stack
For each occludee, an occluder stack is constructed to generate MOS for

each occludee. It is a three dimensional array, with the rectangular base of

the same size as the bounding box of the projected image of the occludee in

For each occludee, an occluder stack is constructed to generate MOS for

each occludee. It is a three dimensional array, with the rectangular base of

the same size as the bounding box of the projected image of the occludee in

Chapter 3. Occlusion Culling
 16

the screen space. After depth sorting, if a primitive is in front of the

occludee and covers some pixels of the occludee’s projected image, the

identifier of the primitive is pushed into the stack at the location of the

covered pixels, as shown in Figure 4. With hardware graphics pipeline, the

projected image of occludees and primitives can be found quickly.

Ideally, we would like to construct the occluder stack for all occludees. But

it may need too much memory and time. In order to make it practical, the

algorithm filters out the less significant occluders and occludees, such as

tiny objects containing only few primitives.

Chapter 3. Occlusion Culling on Culling
 17 17

1 2 4 3

e

Figure 4: Occluder stack and combinatiFigure 4: Occluder stack and combinati

3.2.2 Generation of Minimum 3.2.2 Generation of Minimum
After constructing the occluder

the occludee rectangular base

primitives’ identifier it contains

4. If there are pixels that are

regarded as visible and the sea

row of the combination table

certain pixels within the proje

indicates that there are pixels

while the second column indica

two other primitives, and sim

represents a group of pixels th

contains.

After constructing the occluder

the occludee rectangular base

primitives’ identifier it contains

4. If there are pixels that are

regarded as visible and the sea

row of the combination table

certain pixels within the proje

indicates that there are pixels

while the second column indica

two other primitives, and sim

represents a group of pixels th

contains.

A slot will be cancelled if a

intermediate MOS. For examp

containing A will be cancelled.

picked, certain pixels within th

be covered, and we can skip th

can cover these pixels. If all slot

A slot will be cancelled if a

intermediate MOS. For examp

containing A will be cancelled.

picked, certain pixels within th

be covered, and we can skip th

can cover these pixels. If all slot
no. of
primitiv

A A
C

B
C

A
B

C

B
D

A
C

D

A
B

C

A
B

D

C
D

C

on table. on table.

Occluder Set Occluder Set
stack, the algorithm first sorts the pixels of

, in ascending order of the number of

, and builds up a table as shown in Figure

 covered by no primitive, this occludee is

rch for this occludee’s MOS stops. The first

shows the number of primitives covering

cted image of occludee. The first column

 covered by only one primitive (A or C),
tes that there are some pixels covered by

ilar for the rest. In other words, one slot

at are covered by the IDs (primitives) it

stack, the algorithm first sorts the pixels of

, in ascending order of the number of

, and builds up a table as shown in Figure

 covered by no primitive, this occludee is

rch for this occludee’s MOS stops. The first

shows the number of primitives covering

cted image of occludee. The first column

 covered by only one primitive (A or C),
tes that there are some pixels covered by

ilar for the rest. In other words, one slot

at are covered by the IDs (primitives) it

ny of its IDs has been picked to be in

le, if the primitive A is picked, all slots

In the other words, after the primitive A is

e projected image of occludee is supposed to

e consideration of which other primitives

s of combination table have been cancelled,

ny of its IDs has been picked to be in

le, if the primitive A is picked, all slots

In the other words, after the primitive A is

e projected image of occludee is supposed to

e consideration of which other primitives

s of combination table have been cancelled,

Chapter 3. Occlusion Culling
 18

the occludee is completely covered by the current MOS, which will be

stored into MOS database. Thus, finding one MOS of an occludee is

equivalent to finding one combination of primitives that cancel all the

slots - the whole combination table. Moreover, there may be many

different combinations of primitives that covered all the slots as well.

Therefore, in order to find all MOSs of an occludee, an exhaustive search

is carried out, for all the combination of primitives inside the table.

We run through the table from left to right, as it usually gives early

termination. We simply pick the IDs of the first column’s slots as

intermediate MOS, and cancel the associated slots. Then we concatenate

the first IDs of the first remaining slot, and cancel the corresponding slots

repeatedly. If the whole table is cancelled, we save this intermediate MOS

in MOS database. Afterwards, we backtrack to the last concatenated ID’s

slot, remove the last ID from the intermediate MOS, recover the slots it

cancelled, and try the next allowable ID in the same slot, and cancel the

corresponding slots repeatedly, until we get another MOS. If there is no

next allowable ID in the same slot, we backtrack further to the previous

concatenated ID’s slot, one step at a time, until we find all the MOSs.

According to Figure 4, we first collect A and C as intermediate MOS. Then,

only the third slot (BD) of the second column remains. Hence, the MOSs of

this example are ABC and ACD.

An upper bound on the complexity of an exhaustive search is O(n!), where

n is the number of different primitives of the table. Though it is executed

at pre-processing stage, shorter computation time is preferred. In practice,

we usually do not need to compute all MOSs of each occludee; only the

cheapest (in cost) portion of MOSs for each occludee will be kept. A

pruning technique is applied to shorten the exhaustive search. If we find

that the intermediate MOS already has higher cost compared with the

ones inside the MOS database, we backtrack immediately. This leads to a

quicker termination, and is a trade off for efficiency.

Chapter 3. Occlusion Culling
 19

3.2.3 Scoring and Selecting

Each MOS has its gain and cost. The gain is the number of occludees it

occludes, and the cost is the computation time for processing the MOS

during occlusion culling at run-time. The gain is found by grouping the

identical MOSs of all occludees together. If an MOS S1 is the superset of

MOS S2, the algorithm adds the gain of S2 to S1. This approach explores

the effectiveness of occlusion fusion. The cost of MOS is usually the

rendering cost, as the occlusion culling will render all the selected

occluders at each frame at run-time. This value is approximated by the

number and the total projected sizes of occluders that the MOS contains.

The number of occluders increases geometric computation, while their

projected image sizes affect the rasterization time. Combining the gain,

cost and user preferences, the algorithm assigns a score to each MOS.

After sorting, the algorithm collects the top portion of MOSs up to a user

defined limit. In order to remove redundant occluders that are contained

in more than one MOS, or even hidden by occluders with higher scores,

the algorithm makes use of ID rendering, that is, to render the occluders

into the frame buffer with their IDs for rasterization, instead of their

colors. With ID rendering, the redundant or hidden occluders will not be

found in the ID buffer. The algorithm overlays the ID rendering of each

MOS to the previous ID buffer, and repeats until the number of selected

occluders reaches the limit. The final set of optimal occluders for the whole

scene from a fixed viewpoint is then extracted from the ID buffer. This

process of selecting MOS is essentially repeated for all representative

viewpoints in different directions.

3.3 Occlusion Culling
The occlusion culling consists of three parts. They are view frustum

culling, overlap test with opacity map, and depth comparison with sparse

Chapter 3. Occlusion Culling
 20

depth map. The view frustum culling is the typical algorithm to be applied

on the hierarchical bounding volume tree at first. It culls the nodes falling

outside the view frustum, but not those hidden by occluders. In our

occlusion culling algorithm an occludee is occluded if (a) the projected

image is completely covered by occluders’ image; and (b) the nearest depth

value of occludee is farther than the depth values of occluders. The overlap

test and depth comparison are applied to check these two conditions. If a

node passes through both testes, it is hidden by the selected occluders;

otherwise, the occlusion culling continues for its children recursively.

The straight forward solution to the overlap test and depth comparison is

by a pixel-wise test. But its computation cost is prohibitive for interactive

display. In contrast, the opacity map needs only two integer additions and

one subtraction to do the overlap test. The sparse depth map further

simplifies depth comparison. In this section, the opacity map and sparse

depth map, as well as their uses and features are described.

3.3.1 Opacity Map
The opacity map is a two dimensional array of the down scaled size of the

final image, and stores the opacity values at each pixel. The opacity value

of a pixel is the number of pixels, being covered by occluders and lying

inside the rectangular area from lower left corner up to the pixel. In

Figure 5, pre-selected occluders are rendered off-screen to produce the

bitmap of the occluders’ image. The bitmap is generated in the back buffer

by graphics hardware. A 1 in the bitmap indicates that the pixel is covered

by occluders, with 0 indicating not. The opacity value of the black box in

Figure 5c is equal to the number of 1’s in the black bordered region in

Figure 5b. The algorithm uses scan-line conversion to calculate the opacity

values at each pixel. A row and a column of zeros are added to eliminate

the boundary cases during overlap test. For simplicity, we do not show

them in the figure. As these zeros do not need to be updated, they are

Chapter 3. Occlusion Culling
 21

ignored at the construction phase of the opacity map. The resolution of the

opacity map used for the model tested in this paper is 128×128, excluding

the first row and column of zeros, while the displayed image resolution for

the final images are 512×512 or 1024×1024. We feel that this is a good

balance between the accuracy and computation time.

(c)(a) (b)

Figure 5: (a) The back buffer for rendering the occluders. The grey area is covered by
occluders. (b) The bitmap of the occluders. (c) The opacity map, and the shading showing the
usage of opacity function.

Chapter 3. Occlusion Culling
 22

3.3.2 Overlap Test
The aim of the overlap test is to check whether the rectangular area of the

projected image of an occludee is completely covered by occluders’ images.

In other words, it checks if the area of occludee’s image is fully filled by 1s

in the bitmap. With the opacity map, this query can be done by opacity
function (OPF),

OPF(x1, x2, y1, y2) =
Op(x1,y1) - Op(x1,y2) - Op(x2,y1) + Op(x2,y2)

where Op(s, t) means the opacity value at co-ordinates (s, t) in the opacity

map, while the lower left corner of the opacity map has the co-ordinates (1,

1). The OPF calculates the number of 1’s in the rectangular region

(x1<x<=x2, y1<y<=y2) of the bitmap. Figure 5c shows the application of

OPF to do overlap test for one occludee. The dash lines border the

rectangular region (2<x<=5, 1<y<=5), which is the occludee’s projected

image. The region has 12 pixels in total.

Then, we calculate,

OPF(2, 5, 1, 5)
= Op(2, 1) – Op(2, 5) – Op(5, 1) + Op(5, 5)
= 2 – 9 – 5 + 18
= 6

It means that the occluders cover only 6 pixels inside this region.

Compared with the region size (12 pixels), the occludee is not occluded by

the occluders and therefore fails the overlap test.

The projected image of the occludee can be obtained by either using the

three-dimensional bounding box or the convex hull of the occludee, as a

simplified representative. The computation cost of projected image of

three-dimensional bounding box is much cheaper. However, in the case of

rounded-shape model, the void space of bounding box is too large that an

overlap test often fails. Therefore, we adapt the Quick Hull algorithm [4]

to find the convex hull of the occludee at the pre-processing stage, and use

Chapter 3. Occlusion Culling
 23

its projected image for overlap test. This trade off can be adjusted

according to the model.

Besides the benefit of occluder fusion, the opacity map allows the overlap

test of one occludee to be done with only two additions and one subtraction.

Moreover, two more modifications can be made to perform approximate

overlap tests and adaptive overlap tests.

Approximate Overlap Test: For a highly dense scene composed of many

tiny primitives, such as a bottle full of small stones, a certain tolerance

can be added to the opacity function. This makes the overlap test ignore

some holes of the occluders’ image, and regard the almost entirely hidden

nodes being occluded. Using the opacity map, this modification is easy to

achieve.

Adaptive Overlap Test: In order to balance the computation time of the

occlusion culling and rendering process, a coverage ratio threshold is used

to trigger a stop signal to the recursive occlusion culling algorithm. The

coverage ratio is the ratio of result of the opacity function of one occludee

to its rectangular image size. If the occludee has a coverage ratio less than

0.2, the algorithm stops testing its descendants, as in this case the

occluders cover too little area of the occludee and have low chance to

completely cover the occludee’s descendants. Consequently, those

descendants are regarded as conservatively visible. The threshold will be

adjusted according to the culling time, and prohibits extra occlusion

culling in the case where the rendering capacity is much larger than the

number of primitives falling in the view frustum.

3.3.3 Sparse Depth Map
The sparse depth map is an auxiliary data structure of the depth map,

which is generated at the same phase of off-screen rendering. The depth

map is a two dimensional array recording the depth values (nearest) of the

occluders. In a general approach, the depth comparison is carried out for

Chapter 3. Occlusion Culling
 24

every pixel the occludee covers. But there is depth coherence in the same

row, especially in the case of the same occluder. In a row, the depth value

varies in three modes, near-to-far, far-to-near or still; and this can be

plotted as a line segment chart, where the line segment increases,

decreases or keeps flat. With the chart, we locate the local peaks, which

has the largest depth values locally, as shown in the Figure 6. The

algorithm now only seeks the local peaks of the occluders, instead of every

pixel. The sparse depth map is constructed to store the number of pixels

apart from the nearest local peak to the right.

To construct the sparse depth map, the algorithm transverses the depth

map from the upper right corner to the bottom left, row by row. An integer

variable step is used to record the number of pixels that can be skipped.

Ignoring the border case, it tests two consecutive (named current and last)
pixels. If they are increasing or keeping still, the algorithm adds one to the

step variable and saves it into current pixel of sparse depth map.

Otherwise, if the previous test shows increasing and keeping still, the

current pixel is the peak. It stores step plus one into the peak pixel of the

sparse depth map, and then resets the step to one.

To reduce the construction time of the sparse depth map, the algorithm

does not compute the row of pixels that are covered by no occluders,

because those rows will not be used for the depth comparison. As the

sparse depth map exploits pixel coherence, if the depth map varies from

near-to-far and far-to-near alternatively each pixel, the sparse depth map

will contain all 1s. This means there is no pixel that can be skipped, and

the algorithm will test every pixel as the usual depth comparison. In this

case, the sparse depth map should be disabled, in order to save the

construction time. The resolutions of depth map and sparse depth map

used in our tests are the same as the opacity map, i.e. 128×128.

Chapter 3. Occlusion Culling
 25

view

direction

Figure 6: One row segment of the sparse depth map. It is the top view of an occludee (the
grey rectangular box), and some occluders (the black lines). The two black dots mark the
local farthest pixels (with the locally largest depth values) of this segment, called the peaks.

3.3.4 Depth Comparison

The depth comparison uses both the depth map and sparse depth map. For

an occludee, the algorithm finds the nearest depth value of its bounding

volume. This simplifies the depth comparison, and also guarantees the

correctness of the culling algorithm. The depth comparison is applied to

the projected area of the occludee. It tests the depth from the bottom row

to the top of the rectangular area. For one row, it first tests the depth

value of the leftmost pixel. If the nearest depth value of the occludee is

larger than the pixel value of the depth map, it will test the next-jump

pixel indicated in the sparse depth map. Otherwise, the occludee is in

front of the occluder and the depth test fails and terminates.

We have gone through the part of Occlusion Culling, and now proceed to

the part of Non-Refractive Transparency Rendering. Later, the

experimental results and application performances will be given for both

parts.

Chapter 4. Non-Refractive Transparency Rendering

4 Non-Refractive Transparency Rendering

 26

In this chapter, we describe the overall procedure for applying screen door

transparency at sub-pixel level. Afterwards, we study a precise mask

generation, called pixel tree mask method. Since the pixel mask affects the

accuracy of resultant opacity, and it is regarded as a core part of screen

door transparency. We also present a new mask generation method, called

tabular pixel mask, that considers the pixel distribution with other depth

neighbors. We would show their computational complexity and accuracy in

the later part.

4.1 Overview
To recall the basic of screen door transparency, it generates a set of two

dimensional masks that represent the different levels of opacity. The

pixels of the mask have only two states, which determine whether they are

visible or not. A highly transparent object, the corresponding mask

contains fewer filled pixels. Using the masks, we will render the

transparent objects with masked rasterization. If there are two or more

transparent objects, we stack their masks together one by one with depth

comparison. Therefore, some pixels will be covered, but some are still

visible finally. If the mask size is infinite, the portions of visible pixels

from different objects should be the same as alpha blending. In fact, the

pixels within the mask are sub-pixels of the whole frame buffer; however,

because we focus on the mask generation, we simply call them “pixels”,

which are used in previous literatures.

To apply screen door transparency at the sub-pixel level, basically, we use

a larger conventional frame buffer with magnification equals to the size of

pixel mask. We first render all opaque objects. Afterwards, We generate a

pixel mask for a transparent object, which is filled with the number of

Chapter 4. Non-Refractive Transparency Rendering 27

pixel as the same portion as its alpha value. Using a stencil buffer, we

render the transparent object with the masked rasterization. We repeat to

render all the remaining transparent objects. At last, we re-sample the

image back to its original size. Figure 7 shows the process flow of screen

door transparency rendering.

If the hardware capability is allowed, we can simply apply the pixel mask

into sub-pixel buffer. In our case, the platform is aimed for PC compatible;

we have to use the alternative as mentioned above, with some loss of

performance. However, it does not affect our later analysis. In our

implementation, we use 8×8 mask size for a practical application, and

16×16 and 32×32 for experimental tests. In the practical application, we

provide a 96×96 region for screen door transparency rendering, as it is

limited by the size of hardware frame buffer.

The performance of screen door transparency depends on the accuracy of

higher order opacity obtained from the stacked masks, which requires a

careful computation of pixel distribution among the masks. Therefore, our

research is focused on the precise mask generation for a small mask and

tens of transparent objects.

rendering opaque
objects

rendering
transparency with

masked
rasterization

magnify shrink

Figure 7: The process flow of screen door transparency rendering. An enlarged frame buffer
is used, and all opaque objects are rendered first. Then, transparent objects are rendered
with masked rasterization. Finally, the frame buffer is shrunk back to its original size for visual
output.

Chapter 4. Non-Refractive Transparency Rendering 28

4.2 Precise Mask Generation
The major advantage of screen door transparency is order invariant. The

accuracy depends on the sizes of mask and the filled pixel distribution.

Usually, white noise mask is suggested for mask generation, but it does

not guarantee the accuracy, and acts as a rough approximation instead. To

find a set of precise masks of different opacities, besides an exhaustive

search of all possible masks, there is a binary tree approach, called pixel

tree mask [26]. We base on the idea of binary tree partitioning of mask,

further furnish for the situation of 8×8 mask size and tens of transparent

objects, with a comparable computational complexity.

4.2.1 Binary Tree Approach – Pixel Tree Mask
In [26], a precise mask generation, called pixel tree mask method, is

presented. The algorithm makes use of a binary tree structure to partition

the mask into sub-regions hierarchically, so that the overlapped portion of

any two masks should be the product of their alpha values. This is an

important behavior for the correctness of higher opacities. To illustrate the

idea, we give an example in Figure 8. Suppose there are three transparent

primitives p0, p1 and p2, with alpha values 0.5, 0.25, and 0.5 respectively.

The rendering order is p0, p1 and p2, while their depth order is also p0, p1

and p2, and p0 is the nearest. For the pixel tree mask, since we will binary

partition the masks into sub-regions hierarchically, similar to building a

binary tree structure, we define be the mask region where it is ith node

at jth level of the tree. The root of the tree is the whole mask . We now

generate the first mask by binary partition the whole mask into two

sub-regions and . is the region of zero (empty) and is the region

of one (filled). The size of region of one is equal to the product of its alpha

value and the number of pixels of the parent node. Then, we generate the

second mask, by further partitioning and into , , and

i
js

0
0s

0
0s

0
1s 1

1s 0
1s 1

1s

0
1s 1

1s 0
2s 1

2s 2
2s 3

2s

Chapter 4. Non-Refractive Transparency Rendering 29

respectively. The process continues similarly for the remaining primitives,

and is shown in Figure 8.

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 30 30

 s

p0

α0 = 0.5
p1

α1 = 0.25
p2

α = 0.5

0
0s

1
1s 0

1s

1
2s 2

2s 0
2s

 3
2s

0
3s 1

3s 2
3s 3

3s 4
3s 5

3s 6
3s 7

3s

Figure 8: Examples o
pixel tree masks are a
Figure 8: Examples o
pixel tree masks are a

4.2.2 Error Com4.2.2 Error Com
After the generat

masks. We count

together. The s

assumption on th

carry out the dep

The number of fa

visible pixels afte

After the generat

masks. We count

together. The s

assumption on th

carry out the dep

The number of fa

visible pixels afte
f white noise masks and pixel tree
lso shown.
f white noise masks and pixel tree
lso shown.

parison parison
ion, we compare the pixel

the faulty pixels for both se

tacking order is the ren

e depth order. To stack on

th comparison each pixel,

ulty pixel is the difference b

r stacking and the number

ion, we compare the pixel

the faulty pixels for both se

tacking order is the ren

e depth order. To stack on

th comparison each pixel,

ulty pixel is the difference b

r stacking and the number
 masks. The binary masks. The binary

tree masks with

ts of masks, by s

dering order,

e mask onto ano

like conventiona

etween the actu

of pixels by mul

tree masks with

ts of masks, by s

dering order,

e mask onto ano

like conventiona

etween the actu

of pixels by mul
 tree struc tree struc

 white

tacking

without

ther, we

l z-buffe

al numb

tiplying

 white

tacking

without

ther, we

l z-buffe

al numb

tiplying
white noise masks
pixel tree mask

ture of ture of

noise

them

 any

 also

ring.

er of

 their

noise

them

 any

 also

ring.

er of

 their

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 31 31

alpha values and mask size together. In Figure 9, we can see that the

white noise masks give one or more faulty pixels at the second and higher

opacities, while the pixel tree masks do not.

alpha values and mask size together. In Figure 9, we can see that the

white noise masks give one or more faulty pixels at the second and higher

opacities, while the pixel tree masks do not.

Obviously, it is because the pixel tree mask method distributes the filled

pixels with careful consideration. As the mask is small, the error of the

white noise masks is significant. On the other hand, if the mask size is

infinite, we can achieve the exact solution as well. Of course, it is not

practical for infinite mask size, or even 32×32 mask size.

Obviously, it is because the pixel tree mask method distributes the filled

pixels with careful consideration. As the mask is small, the error of the

white noise masks is significant. On the other hand, if the mask size is

infinite, we can achieve the exact solution as well. Of course, it is not

practical for infinite mask size, or even 32×32 mask size.

p1

α1 = 0.25

p2

α2 = 0.5
p0

α0 = 0.5

 s

exact n
pixels
no. of
white n
no. of
pixel tr

Figure 9
white noise mask
s
pixel tree mask

p0, α0 = 0.5 p1, α1 = 0.25 p2, α2 = 0.5

o. of filled 8 2 3

filled pixels of
oise masks

8 0 5

filled pixels of
ee masks

8 2 3

: Comparison of white noise masks and pixel tree masks.

Chapter 4. Non-Refractive Transparency Rendering 32

s s

s

The mask size is discrete, so it introduces a quantization error from

mapping a continuous alpha value to a discrete number of filled pixels.

Moreover, the pixel tree mask has another source of error. When the tree

grows, the sub-regions at the leave nodes become smaller; they may have a

few of pixels, such as one or two pixels only. These sub-regions cannot

afford further partitioning. We have to “round off” the number of pixels

within these sub-regions, and compensate the “round off” from their peer

sub-regions. This gives an intra-quantization error. In order to solve the

intra-quantization error, we try to sequence the splitting order of leave

nodes in a randomized manner, so that hopefully, the intra-quantization

error will not be accumulated into a single branch of tree vertically. Mostly,

the intra-quantization error should be settled with a proper randomized

splitting sequence. However, if we share the intra-quantization error from

the peer nodes randomly, we have chance for putting some pixels from the

region of one to the region of zero, not at the leave level, but at the

ancestor level. It still violates the binary partition with its ancestors. In

Figure 10, we have three masks, s1, 2 and 3. They have alpha values of

0.5, 0.25 and 0.25 respectively. For simplicity, we split the nodes in the

order as the same as their indexes. There is no intra-quantization error at

the first two masks. At the third mask, a 0.5 pixel error is borrowed from

 and to and correspondingly. It violates the binary partition of 3
3s 7

3s 1
3s 5

3s

2, as it takes one pixel form the region of one to the region of zero.

Sometimes, if the tree has sixteen levels, the new mask may violate its

ancestors up to ten higher levels.

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 33 33

0
0s

1
1s 0

1s

1
2s 3

2s
0.5 0.5

2
2s 0

2s

0
3s 1s 2s 3s 4s 5s 6s 7s

Figure 10: A violaFigure 10: A viola

If an 8×8 mask

binary partitio

able to skip th

order. Therefo

faulty pixels t

transparent ob

n, where n is t

If an 8×8 mask

binary partitio

able to skip th

order. Therefo

faulty pixels t

transparent ob

n, where n is t

4.2.3 Compu4.2.3 Compu
A disadvantag

computation c

objects. For an

256 leave node

thus more tha

tree mask me

objects first. O

tree, we have t

A disadvantag

computation c

objects. For an

256 leave node

thus more tha

tree mask me

objects first. O

tree, we have t
3 3 3 3

tion of binary partition to ancestors tion of binary partition to ancestors

 is used, and the tree grow

n is significant. Though th

e violation, but they may no

re, all the lower levels tha

o the final output. It leads

jects or we simply call it m

he mask size.

 is used, and the tree grow

n is significant. Though th

e violation, but they may no

re, all the lower levels tha

o the final output. It leads

jects or we simply call it m

he mask size.

tational Complexity tational Complexity
e of pixel tree mask or b

omplexity, O(2m), where m
 8×8 mask, if there are 8 t

s. It is a redundant overhea

n half of them are null node

thod requires knowing the

therwise, if we want to ge

o transverse the whole tree

e of pixel tree mask or b

omplexity, O(2m), where m
 8×8 mask, if there are 8 t

s. It is a redundant overhea

n half of them are null node

thod requires knowing the

therwise, if we want to ge

o transverse the whole tree
3 3

by an intra-quantizaby an intra-quantiza

s up to 16 levels

e top six levels

t be the first six

t suffer from vio

to a limitation o

ask capacity, th

s up to 16 levels

e top six levels

t be the first six

t suffer from vio

to a limitation o

ask capacity, th

inary partition

 is the numbe

ransparent obje

d, as we have 6

s. Another disad

 alpha values of

nerate a new m

 from the root ag

inary partition

 is the numbe

ransparent obje

d, as we have 6

s. Another disad

 alpha values of

nerate a new m

 from the root ag
3

tion error. tion error.

, the vio

 in the

 objects

lation i

f the nu

at equa

, the vio

 in the

 objects

lation i

f the nu

at equa

approac

r of tran

cts, we w

4 pixels

vantage

 all tran

ask with

ain.

approac

r of tran

cts, we w

4 pixels

vantage

 all tran

ask with

ain.

lation of

tree are

in depth

ntroduce

mber of

ls to log2

lation of

tree are

in depth

ntroduce

mber of

ls to log2

h is the

sparent

ill have

only and

 is pixel

sparent

 a built

h is the

sparent

ill have

only and

 is pixel

sparent

 a built

Chapter 4. Non-Refractive Transparency Rendering 34

4.2.4 Feasibility
The pixel tree mask method gives a precise stacked mask output, however,

the computational complexity and the limited number of transparent

objects make it improper for an interactive application. In order to give a

practical usage of screen door transparency, the algorithm should use a

small mask, have a low computational complexity, allow an unlimited

number of transparent objects and give a precise stacked mask output.

4.3 Tabular Pixel Mask Generation
To achieve the requirement of practical screen door transparency, we

propose a tabular pixel mask generation, that is based on the pixel tree

mask generation. The tabular pixel mask generation is pin pointing to the

case of small mask (8×8) and many transparent objects (≥6). In this

situation, the first target is to reduce the storage requirement and

computational complexity. As if the binary tree of pixel tree mask (8×8)

has more than six levels, some null nodes appear. Moreover, when the tree

grows to sixteen levels, there are at least 65472 (216 – 64) null nodes. It

implies an excess storage need and redundant computational overhead.

The second aim is to minimize the occurrence of violation when there are

more than six transparent objects. This requires a novel method for

sequencing the order of splitting sub-regions. In this section, we describe

the details of tabular pixel mask generation, including: structure of mask

table, the process of mask generation and the method of sequencing the

splitting order.

4.3.1 Structure of Mask Table
The structure of mask table is simple; it has a number of row entries, two

row indexes and an accumulated error. A row entry is similar to a node of

binary tree structure of the pixel tree mask, and represents a sub-region of

the whole mask. It includes a list of pixels that are inside this sub-region,

a count of the pixels and a boolean value that indicates whether this sub-

region is filled or not. We refer the row entry with a filled region as filled

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 35

r

 35

r

row entry, and another is empty row entry in contract. Every row entry

has at least a pixel, which is the main difference comparing with the

content of a node of pixel tree mask. The two row indexes, named sta t
and end, point to the first and the last previous spawned row entries. The

accumulated error is a floating point variable, that is used for mask

generation.

row entry, and another is empty row entry in contract. Every row entry

has at least a pixel, which is the main difference comparing with the

content of a node of pixel tree mask. The two row indexes, named sta t
and end, point to the first and the last previous spawned row entries. The

accumulated error is a floating point variable, that is used for mask

generation.

The structure of a mask table is shown in Figure 11. The structure of a mask table is shown in Figure 11.

s

Figure 11: Structure of mask table.Figure 11: Structure of mask table.

4.3.2 Mask Generation by 4.3.2 Mask Generation by
Initially, the mask table con

This row entry represents

whole mask in its pixel list,

is empty mask. The start ro

index point to position 1.

Initially, the mask table con

This row entry represents

whole mask in its pixel list,

is empty mask. The start ro

index point to position 1.

The process of mask genera

the start and end row inde

new row entries at the botto

filled sub-region, taking an

times the pixel count of its

taking the remaining pixe

The process of mask genera

the start and end row inde

new row entries at the botto

filled sub-region, taking an

times the pixel count of its

taking the remaining pixe
no. of pixels
-

Table RollingTable Rolling
tains a row e

the whole ma

 and has a bo

w index point

tains a row e

the whole ma

 and has a bo

w index point

tion is by sp

xes. Normally

m of the mas

 amount of p

parent. Anoth

ls from the p

tion is by sp

xes. Normally

m of the mas

 amount of p

parent. Anoth

ls from the p
list of pixel
filled or not?
accu
m
t

ulate
d
 erro

d

r

ntry only

sk. It co

olean va

 to posit

ntry only

sk. It co

olean va

 to posit

awning t

, each ro

k table. O

ixels eq

er child i

arent. If

awning t

, each ro

k table. O

ixels eq

er child i

arent. If
star
en
--

 at the index position 0.

ntains all pixels of the

lue of false, indicating it

ion 0, while the end row

 at the index position 0.

ntains all pixels of the

lue of false, indicating it

ion 0, while the end row

hose row entries within

w entry will spawn two

ne new row entry is for

uals to the alpha value

s for empty sub-regions,

 any of these new row

hose row entries within

w entry will spawn two

ne new row entry is for

uals to the alpha value

s for empty sub-regions,

 any of these new row

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 36 36

entries have zero pixel count, this row entry is abandoned, and the next

new row entry is inserted here instead. After these row entries are

processed, the start and end row indexes are updated to surround these

new row entries.

entries have zero pixel count, this row entry is abandoned, and the next

new row entry is inserted here instead. After these row entries are

processed, the start and end row indexes are updated to surround these

new row entries.

As mentioned before, partitioning a sub-region introduces an intra-

quantization error at the later stage. It is because the new row entry takes

a rounded number of pixels from the parent. In order to compensate this

error, we use a variable for accumulating the error. At each new mask is

going to be generated, we set the accumulated error to zero. Then, every

new row entries take the original rounded amount plus the accumulated

error for splitting. Afterwards, the rounded-off amount is further set to the

accumulated error for the next row entry.

As mentioned before, partitioning a sub-region introduces an intra-

quantization error at the later stage. It is because the new row entry takes

a rounded number of pixels from the parent. In order to compensate this

error, we use a variable for accumulating the error. At each new mask is

going to be generated, we set the accumulated error to zero. Then, every

new row entries take the original rounded amount plus the accumulated

error for splitting. Afterwards, the rounded-off amount is further set to the

accumulated error for the next row entry.

An example is shown in Figure 12. The table has only one row entry as

mask0 initially. We assume the mask has eight pixels. The alpha value of

mask1 is 0.5, so the list of pixel from mask0 is simply divided into two rows

without an accumulated error. The start1 and end1 row indexes are

updated to start2 and end2 row indexes respectively. The alpha value of

mask2 is 0.125. When splitting the first row entry from mask1, we have an

accumulated error –0.5 (i.e. 4 × 0.125 – 1). Then, we set the number of

pixels of the second row entry to 3.5 (the original number of pixels plus

the accumulated error), therefore, this new row entry has 0 pixel (i.e. 3.5
× 0.125), and will be abandoned. The remaining 4 pixels are added to the

next empty row entry. The generation of mask2 is completed.

An example is shown in Figure 12. The table has only one row entry as

mask0 initially. We assume the mask has eight pixels. The alpha value of

mask1 is 0.5, so the list of pixel from mask0 is simply divided into two rows

without an accumulated error. The start1 and end1 row indexes are

updated to start2 and end2 row indexes respectively. The alpha value of

mask2 is 0.125. When splitting the first row entry from mask1, we have an

accumulated error –0.5 (i.e. 4 × 0.125 – 1). Then, we set the number of

pixels of the second row entry to 3.5 (the original number of pixels plus

the accumulated error), therefore, this new row entry has 0 pixel (i.e. 3.5
× 0.125), and will be abandoned. The remaining 4 pixels are added to the

next empty row entry. The generation of mask2 is completed.

0

1

0

mask0

mask1

α = 0.5

s

 1 mask2

α = 0.125
no. of pixels
8

4

4

1

list of pixel
filled or not?

0,1,2,3,4,5,6,7
start1

end1

0,1,2,3
start2

end2

0.0

4,5,6,7

0.0

0 -0.5

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 37 37

3

Figure 12: An example of taFigure 12: An example of ta

4.3.3 Neighborhood E4.3.3 Neighborhood E
The intra-quantizatio

binary partitioning. It

number of transparen

log2 n, where n is th

reduced by sequencing

neighborhood.

The intra-quantizatio

binary partitioning. It

number of transparen

log2 n, where n is th

reduced by sequencing

neighborhood.

The faulty pixels are u

because the masks of f

few of visible pixels a

produced faulty pixels

well. Therefore, if we

can improve the accura

The faulty pixels are u

because the masks of f

few of visible pixels a

produced faulty pixels

well. Therefore, if we

can improve the accura

The idea of neighborh

nearby transparent ob

splitting order of th

quantization error w

separately, for the ob

arrange the pixel list

that it can share the

the object with the sec

region of zero, and r

combinations of the sp

The idea of neighborh

nearby transparent ob

splitting order of th

quantization error w

separately, for the ob

arrange the pixel list

that it can share the

the object with the sec

region of zero, and r

combinations of the sp
0

bular mask genebular mask gene

rror Comperror Compe
n error com

 gives a notic

t objects exce

e mask size)

 the splitting

n error com

 gives a notic

t objects exce

e mask size)

 the splitting

sually locate

ar away obje

t all. Moreov

, the far awa

prevent the

cy of overall

sually locate

ar away obje

t all. Moreov

, the far awa

prevent the

cy of overall

ood compens

jects. When

e new mask

ithin the re

ject with the

of splitting o

intra-quantiz

ond highest p

epeats for th

litting order

ood compens

jects. When

e new mask

ithin the re

ject with the

of splitting o

intra-quantiz

ond highest p

epeats for th

litting order
0

0
ratioratio

nsansa
pen

eab

ed

. T

 or

pen

eab

ed

. T

 or

d a

cts

er,

y o

viol

 opa

d a

cts

er,

y o

viol

 opa

atio

we

, i

gio

 h

rde

atio

rio

e l

for

atio

we

, i

gio

 h

rde

atio

rio

e l

for
4

n. n.

tion tion
sation intr

le amount o

s the capac

he number

der with co

sation intr

le amount o

s the capac

he number

der with co

t the mask

are mostly

 if the near

bjects will

ation for ne

city.

t the mask

are mostly

 if the near

bjects will

ation for ne

city.

n is that, w

 add a new

n the way

n of one a

ighest prior

r of the re

n error wit

rity. The op

ower priori

the lower p

n is that, w

 add a new

n the way

n of one a

ighest prior

r of the re

n error wit

rity. The op

ower priori

the lower p
4,5,6,7
1

3

1,2,

oduces the violation of

f faulty pixels when the

ity of the mask size (i.e.

 of faulty pixels can be

nsideration of the depth

oduces the violation of

f faulty pixels when the

ity of the mask size (i.e.

 of faulty pixels can be

nsideration of the depth

s of nearby objects. It is

covered, and have only a

by objects have already

inherent those errors as

arby objects’ masks, we

s of nearby objects. It is

covered, and have only a

by objects have already

inherent those errors as

arby objects’ masks, we

e keep track of several

 mask, we sequence the

 of sharing the intra-

nd the region of zero

ities first. Now, we re-

gion of one partially, so

hin the region of one of

eration is similar for the

ty. We will have fewer

riorities, as the pixel list

e keep track of several

 mask, we sequence the

 of sharing the intra-

nd the region of zero

ities first. Now, we re-

gion of one partially, so

hin the region of one of

eration is similar for the

ty. We will have fewer

riorities, as the pixel list

Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering 38

 38

of splitting orders becomes shorter. It means that the new mask may have

violation to these low priority object masks inevitably at last.

of splitting orders becomes shorter. It means that the new mask may have

violation to these low priority object masks inevitably at last.

Now, we would give an algorithmic description and an example. We first

define RFj & REj be the filled and empty row entries for the jth objects,

where j is the index of the mask table; in this case, j is also the rendering

order. Both RFj and REj contain the list of pixels, which represent their

mask coverage regions, but without the ordering among these pixels. Then,

we define Fi and Ei be the partial pixel list of splitting order of the new

mask, with considering for the object up to the ith priority, or simply

depth value in this case. It means that F0 is the pixel list of splitting order,

sharing intra-quantization error within the region of one of the 0th

priority object. In addition, F1 is the partial pixel list of splitting order,

which shares intra-quantization error among the regions of one of both the

0th and 1th priority object. In fact, Fm-1 is the intersection of RF from 0th

to (m-1)th priority.. The definition of Ei is similar. Therefore, when we add

a new mask, we find out these Fm and Em to the certain priorities, say 6.

Afterwards, we collect the pixels from Fm to F0, with discarding the

duplicated ones, which is the final splitting order for this new mask. We

apply the same procedure to Em to E0 as well.

Now, we would give an algorithmic description and an example. We first

define RFj & REj be the filled and empty row entries for the jth objects,

where j is the index of the mask table; in this case, j is also the rendering

order. Both RFj and REj contain the list of pixels, which represent their

mask coverage regions, but without the ordering among these pixels. Then,

we define Fi and Ei be the partial pixel list of splitting order of the new

mask, with considering for the object up to the ith priority, or simply

depth value in this case. It means that F0 is the pixel list of splitting order,

sharing intra-quantization error within the region of one of the 0th

priority object. In addition, F1 is the partial pixel list of splitting order,

which shares intra-quantization error among the regions of one of both the

0th and 1th priority object. In fact, Fm-1 is the intersection of RF from 0th

to (m-1)th priority.. The definition of Ei is similar. Therefore, when we add

a new mask, we find out these Fm and Em to the certain priorities, say 6.

Afterwards, we collect the pixels from Fm to F0, with discarding the

duplicated ones, which is the final splitting order for this new mask. We

apply the same procedure to Em to E0 as well.

mask0

mask1

mask2

mask3

4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 mask4

Figure 13: An example of neighborhood error compensation. Figure 13: An example of neighborhood error compensation.

Chapter 4. Non-Refractive Transparency Rendering 39

In Figure 13, we assume that there is no abandoned row entry while

splitting the mask0~4 for simplicity. The indexes of row entries are shown

in mask4. We keep track of three nearest objects, and in this case they are

mask2, mask1 and mask4 in the descending order of their depth. We find

RF2, RF1, RF4 and RE2, RE1, RE4 shown in Table 1. Initially, F0 is equal to

RF2, containing { 4, 5, 6, 7, 12, 13, 14, 15 }. To consider the second priority

as well, we calculate the intersection of RF2 and RF1, that is { 12, 13, 14,
15 }, which is stored in F1. For the third priority, F2 is the intersection of

RF2, RF1 and RF4 or { 13, 15 }. The generation of E0~2 are similar and the

resultant F0~2 ad E0~2 are shown below. Finally, the splitting order of the

new mask is { 13, 15, 12, 14, 4, 5, 6, 7, 0, 2, 1, 3, 8, 9, 10, 11 }.

filled row entry list of pixels empty row entry list of pixels
RF2 4,5,6,7,12,13,14,15 RE2 0,1,2,3,8,9,10,11
RF1 8,9,10,11,12,13,14,15 RE1 0,1,2,3,4,5,6,7
RF4 1,3,5,7,9,11,13,15 RE4 0,2,4,6,8,10,12,14

splitting order for
filled row entry

list of pixels splitting order for
empty row entry

list of pixels

F0 4,5,6,7,12,13,14,15 E0 0,1,2,3,8,9,10,11
F1 12,13,14,15 E1 0,1,2,3
F2 13,15 E2 0,2

Table 1: Lists of pixels for filled and empty row entries and their corresponding splitting
orders.

4.3.4 Computational Complexity
Assume we use a mask of size n, and there are m transparent objects. For

the mth mask generation, if 2m ≤ n, the computational complexity is O(2m);
otherwise, it is O(n). For the computational complexity of generation of m

masks, if 2m ≤ n, it is O(2m+1-1), else it is O(n*(m – log2 n + 2) -1) or

simply O(m*n).

To compare the computational complexities of pixel tree mask and tabular

pixel mask method, we assume that there are m transparent objects, and

each mask has size n again. Then we count for the total numbers of atomic

operations for generating m masks of the two methods. We define the

Chapter 4. Non-Refractive Transparency Rendering 40

atomic operations of pixel tree and tabular pixel mask methods to be the

splitting of nodes and row entries respectively. We calculate the

theoretical computation complexity for four different cases and the result

is shown in Table 2. We clarify that, since the actual computational times

of atomic operations are different, therefore, the figures in Table 2 can

only be used as supplementary reference.

In the case 2 and 4, we observe that the pixel tree and tabular pixel mask

generation have the same computational complexity. It is because in these

cases the number of transparent objects is still within the capacity of the

mask size. In the test case 1 and 3, the number of transparent objects

exceeds the capacity of mask size, there are many null nodes produced for

the pixel tree mask generation, and thus causes a large redundant

overhead, while the tabular pixel mask method does not.

 Pixel tree mask Tabular pixel mask
Computational
complexity

2m+1 – 1 If n ≤ 2m, => 2m+1 - 1;
else => n × (m – log2 n + 2) –1

1) n = 1024, m = 24 33554431 16383
2) n = 1024, m = 10 2047 2047
3) n = 64, m = 16 131071 767
4) n = 64, m = 6 127 127

Table 2: Computational complexities of white noise, pixel tree and tabular pixel mask
generations.

With the same assumption as above, and also let R be the size of frame

buffer. The computational complexities of applying masks are, O(m) for

geometric calculation, O(R*n) for rasterization, and O(R*n) for depth

comparison. However, if hardware sub-pixel buffer is big enough, we can

ideally achieve O(R) for time complexity of rasterization though we have

O(R*n) for space complexity.

The main bottleneck of the tabular pixel mask algorithm is the part of

mask generation, which has computational complexity of O(m*n), if we

generate all the masks again and again at each pixel. However, we usually

apply this method as a fast approximation of rendering a lot of

Chapter 4. Non-Refractive Transparency Rendering 41

transparent objects. Thus, we accept a trade off between the visual

accuracy and time complexity. In order to reduce the time complexity, we

only re-generate the masks for the divided regions of the whole frame

buffer, instead of generating all the masks again at each pixel. It is

because Neighborhood Error Compensation does not require a full depth

sorting, only require to know which certain number of objects are the

nearest, and they are not sorted at all even. This property is able to afford

a few depth changes of objects within the divided region, without any

noticeable error. The mask generation scheme may depend on the number

of transparent objects and the mask size.

Now, we compare the overall complexity of tabular pixel mask generation

with the conventional A-buffer method [5], which has time complexity of

O(R*m*log2 m) and space complexity of O(R*m). If we carry out the

pixel mask generation per pixel, we have a time complexity of O(R*m*n)
and space complexity of O(R*n). Assume n is smaller than m, pixel mask

generation will use less space than A-buffer method, but the time

complexity of pixel mask generation will be far behind. For example, if we

use an 8×8 mask, n is 64, the pixel mask generation will be faster only

when m > 264. However, if we allow generating the pixel masks for the

divided regions sized of DR, then, pixel mask generation will have a

reduced time complexity of O(R/DR*m*n). In this case, the pixel mask

generation will be faster when m > 2n/DR. So if we use an 8×8 mask again,

and assume DR is a 4×4 region, then, the pixel mask generation will be

faster when m > 24. This performance is more practical. The Table 3 shows

the computational complexity comparison.

Chapter 4. Non-Refractive Transparency Rendering 42

 A-buffer algorithm Tabular pixel mask
generation (pixel)

Tabular pixel mask
generation (divided
region)

Time complexity O(R*m*log2 m) O(R*m*n) O(R/DR*m*n)
Space complexity O(R*m) O(R*n) O(R*n)

Table 3: Comparison of computational complexities of the A-buffer algorithm and tabular pixel
mask generation for pixel and divided region. R stands for the frame buffer size, DR is the
size of a divided region, m is the number of transparent objects and n is the mask size.

Chapter 5. Experiments and Applications

5 Experiments and Applications

 43

We have implemented the occlusion culling and non-refractive

transparency rendering for experimental testing and practical application.

In order to analyze and illustrate the performance of these algorithms, we

use a simple walkthrough system as a test platform for the MOS and the

occlusion culling algorithms. Moreover, we apply the occlusion culling

algorithm to the application “Virtual Brain”. However, as Virtual Brain

setup a dynamic environment, so we bypass the implementation of MOS

algorithm. For the tabular pixel mask generation, we use a set of

randomized test data for comparison first, and also give a practical result

from Virtual Brain. Table 4 shows the summary of the experiments and

applications for the three algorithms.

 Experiments Application

s
Occlusion culling

MOS algorithm rough system – outdoor city -- Walkth
scene

Occlusion culling rough system – outdoor city

Brain

Walkth
scene

Virtual

Non ncy rende-refractive transpare ring
Tabular Pixel Mask Random test data

Brain Generation
Virtual

Table 4: Summary of the experiments and

5.1 Experimental Result
applications.

5.1.1 Occlusion Culling on A Walkthrough System
We have implemented the MOS and occlusion culling algorithms on a

simple walkthrough system, which uses OpenGL and runs on an SGI

Indigo2 Max IMPACT workstation with R10000 CPU (195MHz) and 192

MB RAM. In this section, we demonstrate the performance of the

minimum occluder set algorithm and occlusion culling using the opacity

Chapter 5. Experiments and Applications ications
 44

 and no texture. A birdeye view of the test model is shown in

Figure 26.

and culling percentage,

arying the maximum number of occluders used.

Figure 14: Frame rate and culling percentage of different occluder selection methods. PS

 44

 and no texture. A birdeye view of the test model is shown in

Figure 26.

and culling percentage,

arying the maximum number of occluders used.

Figure 14: Frame rate and culling percentage of different occluder selection methods. PS

map. The test model is composed of thirty copies of a Chicago city model

and contains 300,540 polygons in total. The whole environment uses one

light source

map. The test model is composed of thirty copies of a Chicago city model

and contains 300,540 polygons in total. The whole environment uses one

light source

5.1.1.1 MOS Algorithm
In the following tests, we compare the performances of different occluder

selection criteria. They are the projected size, MOS, and first-hit. The

experiment is carried out at a certain viewpoint that gives about 400

visible primitives in 512×512 resolution. For the criterion of projected size,

we simply pick occluders in the descending order. For the first-hit criterion,

we first find all the visible primitives, and count the number of pixels

covered by these primitives. Afterwards, we choose the occluders in the

descending order. We record the frame rate

5.1.1.1 MOS Algorithm
In the following tests, we compare the performances of different occluder

selection criteria. They are the projected size, MOS, and first-hit. The

experiment is carried out at a certain viewpoint that gives about 400

visible primitives in 512×512 resolution. For the criterion of projected size,

we simply pick occluders in the descending order. For the first-hit criterion,

we first find all the visible primitives, and count the number of pixels

covered by these primitives. Afterwards, we choose the occluders in the

descending order. We record the frame rate

vv

PS MOS FH

0

25

50

75

100

32 192 768

o f O c c lude rs

C
ul

lin
g

%

0

8

12

16

20

32 192 768

o f O c c lude rs

Fr
am

es
/S

ec

4

stands for the criterion of projected size, FH stands for the criterion of first-hit.

Figure 14 shows that the MOS algorithm needs 192 occluders to achieve

the optimal culling percentage, about 94%. The criterion of first-hit uses

about 384 occluders to reach the same culling percentage. The projected

size criterion has about 93% culling with 512 occluders. The culling

percentage of the projected size criterion has the slowest growth rate. Also,

stands for the criterion of projected size, FH stands for the criterion of first-hit.

Figure 14 shows that the MOS algorithm needs 192 occluders to achieve

the optimal culling percentage, about 94%. The criterion of first-hit uses

about 384 occluders to reach the same culling percentage. The projected

size criterion has about 93% culling with 512 occluders. The culling

percentage of the projected size criterion has the slowest growth rate. Also,

Chapter 5. Experiments and Applications
 45

more occluders are used, more computation overhead is introduced for

occlusion culling, thus decreasing the frame rate shown in the tail part of

the curve. The MOS algorithm uses a half of occluders as by the first-hit

criterion to yield the optimal culling percentage, as it considers the

combined gain and redundancy of primitives. These points are illustrated

in Figure 15, which shows the top view of the whole model. The light grey

boxes are nodes outside the view frustum, and the dark grey boxes are

culled by the occluders. These are the results when 192 occluders are used.

Except in the MOS algorithm, the incomplete coverage caused by other

two methods reduces the culling percentage, while the redundancy of

ccluders leads to increased overhead without improving culling ratio.

e culled by occluders and the black boxes are conservatively visible. From the
left to right, the figures show the cases (a) projected size, (b) MOS and (c)) first-hit criteria
respectively.

nd group shows performances and

located with different depth complexities, and classified as best, average

o

Figure 15: The top view of model. The light grey boxes are outside the view frustum, the dark
grey boxes ar

(a) (b) (c)

5.1.1.2 Occlusion Culling
We have conducted two groups of tests for the occlusion culling. The first

group is aimed to illustrate the speedup of occlusion culling with different

depth complexities; and the seco

bottleneck at different resolutions.

Tests at Different Routes: The following three tests are carried out with

the same Chicago model, but alone different routes. The three routes are

Chapter 5. Experiments and Applications
 46

and worst cases for the speedup. The tests use 64 occluders and have

512×512 resolution. The three routes have 120 frames each.

For the best case, the route starts at the lower left corner of the

environment, and heads towards the center part. It has the highest depth

complexity. The speedup of occlusion culling to view frustum is 14.6 and

the average frame rate is 25.5. For the average case, the route is located at

the center of the environment, the depth complexity is medium. It has the

speedup of 4.4 and average frame rate of 26.7. For the worst case, the

route is set at the upper right corner of the environment, with the viewer

looking outwards. It has lowest depth complexity, and the speedup and

average frame rate are 0.7 and 34.6, respectively. For reference, the frame

rate of occlusion culling with pixel-wise comparison is also shown in

Figure 16. It has the average frame rate of 17.7, 19.4 and 28.8 for the

three routes, respectively.

According to Figure 16, the occlusion culling has adverse effect on the

frame rate in the worst case. That is because the computation cost of view

frustum culling is lower than occlusion culling. If the environment has low

depth complexity, occlusion culling causes overhead instead of profit to

culling percentage.

Figure 17 shows the performance of occlusion culling using different

occluder selection criteria for the best case route. The average frame rates

for projected size and first-hit criteria are 5.4 and 24.5, relatively. The

difference between MOS and first-hit criteria decreases gradually in the

first twenty frames, and their performances are similar in the remaining

frames. That is because the routes do not have too much visible primitives,

so the superset of occluders (first-hit ones) converges to the optimal set

after the first twenty frames.

Tests at Different Resolutions: The performance of occlusion culling

using the opacity map is shown in Figure 18. The test is based on the best

Chapter 5. Experiments and Applications
 47

case route, using MOS. The two figures show the results of view frustum

culling and occlusion culling at resolutions of 512×512, 768×768 and

1024×1024. The average frame rates are 25.6, 20.1 and 16.7 of the three

ascending resolutions. As the sizes of opacity map and sparse depth map

applied for the three resolutions are the same, their culling percentages

are constant. It is regarded as no change for the geometric computation.

The drop in frame rate is caused by the rasterization of hardware

rendering process, which is also the bottleneck of walkthrough system now.

Although the frame rates of 768×768 and 1024×1024 resolutions are lower,

we still have a speedup of 9.8 and 11.6 respectively.

Chapter 5. Experiments and Applications ications
 48

 48

 Nil VF OM PC

0

10

20

30

40

1 41 81

Frame #

Fr
am

e/
S

ec

0

10

20

30

40

1 41 81

Frame #

Fr
am

e/
S

ec

0

20

40

60

80

100

1 41 81

Frame #

C
ul

lin
g

%

0

20

40

60

80

100

1 41 81

Frame #

C
ul

lin
g

%

Best Case

Average Case

0

20

40

60

80

1 41 81

Frame #

Fr
am

e/
S

ec

0

20

40

60

80

100

1 41 81

Frame #

C
ul

lin
g

%

 Worst Case

Figure 16: Performances of occlusion culling with different routes. Nil represents that no
culling is applied. VF represents that view frustum culling is applied. OM represents that
occlusion culling with opacity map and sparse depth map is applied. PC means occlusion
culling with pixel-wise comparison.

Figure 16: Performances of occlusion culling with different routes. Nil represents that no
culling is applied. VF represents that view frustum culling is applied. OM represents that
occlusion culling with opacity map and sparse depth map is applied. PC means occlusion
culling with pixel-wise comparison.

Chapter 5. Experiments and Applications ications
 49

 49

 FH PS MOS

0

10

20

30

40

1 41 81

Frame #

Fr
am

e/
S

ec

0

20

40

60

80

100

1 41 81

Frame #
C

ul
lin

g
%

Figure 17: Performances of occlusion culling with different occluder selection criteria for the
best case route. PS, MOS and FH represent the criteria of projected-size, minimum occluder
set and first-hit, respectively.

Figure 17: Performances of occlusion culling with different occluder selection criteria for the
best case route. PS, MOS and FH represent the criteria of projected-size, minimum occluder
set and first-hit, respectively.

512 768 1024

0

10

20

30

40

1 41 81

Frame #

Fr
am

es
/S

ec

(a)

1.5

1.6

1.7

1.8

1.9

1 41 81

Frame #

Fr
am

es
/S

ec

(b)

Figure 18: (a) Performances of occlusion culling using opacity map and MOS algorithm at
different resolutions, 512×512, 768×768 and 1024×1024, (b) The result of view frustum.
Figure 18: (a) Performances of occlusion culling using opacity map and MOS algorithm at
different resolutions, 512×512, 768×768 and 1024×1024, (b) The result of view frustum.

Chapter 5. Experiments and Applications
 50

5.1.2 Tabular Pixel Mask Generation with Random Test Data
Two test cases are conducted, for comparing the accuracies of white noise

mask, tabular pixel mask with and without neighborhood error

compensation. The first test case uses 16×16 sized masks for 16

transparent objects, and the second test case uses 32×32 sized mask for 32

transparent objects. In both cases, each object has a random opacity or

alpha value, and a depth. They are generated in a randomized order, and

we make no assumption on the depth or rendering order. We stack the

masks together one by one, we records the number of faulty pixels at each

level. The result of first test is shown in Figure 19 and the second one is

shown in Figure 20.

White Noise Mask

0

2

4

6

8

10

0 4 8 12

Level

Fa
ul

ty
 P

ix
el

s

Max

Min

Mean

Tabular Pixel Mask without Neighborhood Error Compensation

0

2

4

6

8

10

0 4 8 12

Level

Fa
ul

ty
 P

ix
el

s

Max

Min

Mean

Chapter 5. Experiments and Applications
 51

Tabular Pixel Mask

0

2

4

6

8

10

0 4 8 12

Level

Fa
ul

ty
 P

ix
el

s

Max

Min

Mean

Figure 19: Results of white noise mask, tabular pixel mask with and without neighborhood
error compensation for 16×16 sized mask.

White Noise Mask

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28

Level

Fa
ul

ty
 P

ix
el

s

Max

Min

Mean

Tabular Pixel Mask without Neighborhood Error Comensation

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28

Level

Fa
ul

ty
 P

ix
el

s

Max

Min

Mean

Tabular Pixel M ask

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28

Level

M ax
M in
M ean

Chapter 5. Experiments and Applications
 52

Figure 20: Results of white noise mask, tabular pixel mask with and without neighborhood
error compensation for 32×32 sized mask.

The minimum numbers of faulty pixels are always zero at each level for

the three methods. However, for the maximum and average number of

faulty pixels, tabular pixel mask gives a better result, achieving only 1 to 2

faulty pixels. While the other two masks have similar behaviors, and give

about 7 faulty pixels for 16×16 sized mask and 27 faulty pixels for 32×32

sized mask in the worst cases. It is because the mask size of white noise

mask is not large enough to achieve the correct result by the ground of

probability. About the tabular pixel mask without neighborhood error

compensation, the number of transparent objects exceeds the capacity of

mask, and causes serious violation of binary partitioning. On the other

hand, the tabular pixel mask method with neighborhood error

compensation has minimized the violation and provides a better result.

5.2 Application Performance – Virtual Brain
The occlusion culling algorithm and the tabular pixel mask generation is

implemented in an application known as “Virtual Brain”. The platform of

the application is a DELL Precision 410 PC with Intel Pentium II (400

MHz), 256 MB RAM, and Intergraph Intense 3D 3410GT display card. In

this section, we demonstrate the performance of occlusion culling and

visual output of non-refractive transparency by using tabular pixel mask

generation.

5.2.1 Occlusion Culling
We have recorded the timing and culling percentage of 475 frames to show

the performance of occlusion culling in the “Virtual Brain”. The camera

path is simply rotating around the whole brain and skull, and several

screen snapshots are captured as shown in Figure 21. As the organs of the

brain and skull are expected to be movable, we use the projected size of

primitive as the criteria of occluder selection, instead of the MOS

Chapter 5. Experiments and Applications
 53

algorithm. The view frustum always contains the whole model and view

frustum culling does not help, so we only consider the cases of occlusion

culling algorithm and brute force approach. In Figure 20, we draw the

primitives that are culled in sharp colors, while the other ones are in

transparent grey. It shows quite a lot of interior primitives are culled.

According to the Figure 22, we achieve a maximum culling percentage of

78.6% and frame rate speedup of 3.1 while the total number of polygons is

207,372.

Figure 21: Screen snapshots of occlusion culling algorithm. The colorful interior primitives are
detected to be invisible, and culled.

Chapter 5. Experiments and Applications ications
 54

 54

 OC NIL

0

100

200

300

400

500

1 101 201 301 401

Frame #

Ti
m

e
(m

s)

0

20

40

60

80

100

120

1 101 201 301 401

Frame #

C
ul

lin
g

%

Figure 22: Performance of Occlusion Culling algorithm in "Virtual Brain". OC stands for
Occlusion Culling while NIL stands for brute force approach.

Chapter 5. Experiments and Applications ications
 55

 55

5.2.2 Tabular Pixel Mask Generation 5.2.2 Tabular Pixel Mask Generation

Firstly, we show two visual properties of screen door transparency

rendering, they are order invariant and interior layer masking-off. Second,

we demonstrate the visual outputs of transparency rendering using alpha

blending, white noise mask, pixel tree mask and tabular pixel mask.

Firstly, we show two visual properties of screen door transparency

rendering, they are order invariant and interior layer masking-off. Second,

we demonstrate the visual outputs of transparency rendering using alpha

blending, white noise mask, pixel tree mask and tabular pixel mask.

Figure 23 illustrates the order invariant property of screen door

transparency. At the lower right part of both pictures, we have three

organs; they are red, blue and green in color, following their depth order.

The red and blue ones are transparent. However, they are rendered in the

order of green, red and blue. Therefore, in the left picture, we apply the

general alpha blending without visibility sorting, that cannot illustrate

the blue organ through the red one. In the red rectangle of right picture,

we can see that the blue organ is behind the red one and before the green

one.

Figure 23 illustrates the order invariant property of screen door

transparency. At the lower right part of both pictures, we have three

organs; they are red, blue and green in color, following their depth order.

The red and blue ones are transparent. However, they are rendered in the

order of green, red and blue. Therefore, in the left picture, we apply the

general alpha blending without visibility sorting, that cannot illustrate

the blue organ through the red one. In the red rectangle of right picture,

we can see that the blue organ is behind the red one and before the green

one.

Figure 23: The left picture applies general alpha blending without visibility sorting, thus shows
an incorrect opacity. The right picture applies screen door transparency and clearly shows
that the blue organ is between the red and the green ones.

Chapter 5. Experiments and Applications ications
 56

 56

Figure 24 shows an additional advantage of screen door transparency. If a

transparent object contains some interior primitives, which sometimes

cause confusion of the overall shape and shading. For example, some

interior primitives are shown in the lower right purple cerebrum of the left

picture, but they are just confusing the visual appearance of the organ in

clay yellow. Using pixel mask, we can have a visual output of the

outermost layer of organs only, which is shown in the red rectangle of the

right picture. It is because the same object is able to have the same mask,

that will cover the interior primitives’ mask pixels.

Figure 24 shows an additional advantage of screen door transparency. If a

transparent object contains some interior primitives, which sometimes

cause confusion of the overall shape and shading. For example, some

interior primitives are shown in the lower right purple cerebrum of the left

picture, but they are just confusing the visual appearance of the organ in

clay yellow. Using pixel mask, we can have a visual output of the

outermost layer of organs only, which is shown in the red rectangle of the

right picture. It is because the same object is able to have the same mask,

that will cover the interior primitives’ mask pixels.

Figure 24: The left picture shows some interior primitives that give a confusing visual output,
while the right one only shows the outermost layer of the organs, and provides a clear
understanding.

Chapter 5. Experiments and Applications
 57

In Figure 25, we show the visual outputs of alpha blending with and

without visibility sorting, white noise mask, pixel tree mask and tabular

pixel mask. We render 12 transparent objects, with an 8×8 mask for those

screen door transparency techniques. In Figure 25a, alpha blending

without visibility sorting is applied, some organs are blended incorrectly,

or even hidden wholly, since they are not rendered in a far-to-near order.

In Figure 25b, we use alpha blending with visibility sorting, the picture

shows the correct visual output. In Figure 25c and Figure 25d, we use

white noise mask and pixel mask respectively. There are some parts are

hidden, and we use the red line to highlight the incorrect portion. In

Figure 25e, we use tabular pixel mask, and the visual output is accurate

as alpha blending with visibility sorting.

Chapter 5.
 58

 Experiments and Applications

(a) alpha blending without visibility sorting (a) alpha blending with visibility sorting

(c) white noise mask (d) pixel tree mask

Chapter 5.
 59

 Experiments and Applications

(e) tabular pixel mask
Figure 25: Visual outputs of alpha blending with and without visibility sorting, white noise
mask, pixel tree mask and tabular pixel mask.

Chapter 6. Virtual Brain

6 Virtual Brain

 60

Traditional neuroanatomy was taught by using cross-section slide of the

brain, but in recent years many computer based applications have been

developed. Through the use of computer graphics and virtual reality, the

students of medicine can have an interactive visualization of three

dimensional structure of human organs. With the shift in emphasis

towards a medical curriculum which stresses more important on learning

through the use of computers, the Department of Pathology recognizes the

advantage of computerized learning toolkit for anatomy and pathology.

Therefore, a project “Virtual Brain” co-operated by the Department of

Pathology, and the Department of Computer Science and Information

Systems is launched, in order to develop a learning product for medical

students.

The developed system supports real-time visualization of the surface-

based data model of human organs on affordable PC platform. The user

can “walk through” the interior structure of human organs, and thus

perceives a better understanding of the relationship of different organs.

Moreover, the user can move, rotate, resize and zoom the organs, so as to

recognize the geographical and anatomical location. The textual

information of organ is further provided as a complete reference of medical

knowledge.

As the floating-point computational power and 3D graphics API are

limited on general PC, some advanced speedup techniques have been

applied to achieve interactive frame rate and transparency effect. The

development consists mainly of three parts: data modeling, speed-up

technique and transparency rendering. The aim of data modeling is to

unify the data file formats, correct the organ positions and orientations,

Chapter 6. Virtual Brain
 61

and increase data efficiency. The source data comes in different file

formats and coordinates system. We standardize their file formats, i.e.

Virtual Brain Object, (*.vbo). This is a subset of the well known file format,

WaveFront Object file (*.obj). Also, we modified the source data set so that

all organs are in the right position and orientation. The overly tessellated

surface data has been simplified to minimize the requirement of

computational power. The number of polygons of resultant data set is

about two hundred thousands. The application is speeded up by our

occlusion culling algorithm. As an opaque skull usually occludes most of

the interior tissues from a fixed view point, we can skip to render those

culled primitives, in order to increase the frame rate. Transparency

rendering is also important to visualization, as it can reveal the

relationship between the outer shield and the inner tissues. The screen

door transparency rendering using tabular pixel mask method is applied,

since it does not require the visibility sorting., which is favorable to an

interactive application. Though screen door transparency rendering is still

under a pilot run and allows a small displaying region, its computational

load is light enough for interactive visualization. If hardware

supersampling is provided, its usage will be greatly increased.

In the coming phrase, the information cue, question module, and other

usages of the existing infrastructure are the major areas for improvement.

Our goal is to provide an interactive, user-friendly, and affordable

visualization system for medical education. Some screen snapshots are

shown in Figure 27.

Chapter 7. Conclusion and Future Works

7 Conclusion and Future Works

 62

We have presented an occlusion culling algorithm using the minimum

occluder set and opacity map, and a non-refractive transparency rendering

method using the tabular pixel mask generation.

The occlusion culling algorithm results in significant speedup of the frame

rate and a reduced number of occluders required. The speedup by

occlusion culling is due to the use of the opacity map and sparse depth

map. The opacity map needs only two integer additions and one

subtraction to do the overlap test. The sparse depth map further simplifies

depth comparison, by not using pixel-wise comparison. Moreover, the high

culling percentage is achieved by the MOS algorithm, which takes into

account the combined gain and redundancy of occluders. The occlusion

culling algorithm makes no special assumption on occluders and models

and is suitable for implementation on current graphics systems.

The tabular pixel mask generation provides a fast, order invariant method

for non-refractive transparency rendering. It is feasible to apply the screen

door transparency at sub-pixel level, and gives a comparative accurate

visual effect by avoiding the violation of binary partitioning among the

depth neighborhood.

Further research includes the extension of the MOS algorithm to dynamic

environments and integration with impostors for scalability. The MOS

algorithm can be adapted to a dynamic model if the probability of dynamic

occlusion is considered in the process of scoring. For an outdoor

environment with a large number of visible primitives, we can apply

impostors [33, 39] for distant objects. Integration with impostors would

make a walkthrough system into a semi-image-based VR system. Thus we

would still have geometric data for nearby objects, which allows collision

Chapter 7. Conclusion and Future Works
 63

detection and interaction for the users, and the total number of primitives

handled by graphics hardware is greatly reduced since distant primitives

are represented as impostors.

Also, about the screen door transparency rendering, we would break the

limitation of frame buffer, by allowing a trade off from the mask size,

shifting frame buffer requirement to main memory with frequent or

incremental frame buffer reading, or using dedicated hardware with

supersampling.

Furthermore, we would extend the functionality of the application “Virtual

Brain”, for example, adding the information cue, question module, and

other usages of the existing infrastructure, so as to provide an interactive,

user-friendly, and affordable visualization system for medical education.

Chapter 9. Appendix
 67

9 Appendix
9.1 Chicago City Model

Figure 26: A birdeye view of the test model, which is composed of thirty copies of a Chicago
city model and contains 300,540 polygons in total.

Chapter 9. Appendix
 68

9.2 Virtual Brain Screen Snapshot

Figure 27: Screen snapshots of "Virtual Brain". The project is ongoing to import the whole
body!

Chapter 8. References

8 References

 64

1. P. K. Agarwal, L. J. Guibas, T. M. Murali and J. S. Vitter. Cylindrical
Static and Kinetic Binary Space Partitions. Computational Geometry
1997, pp. 39-48.

2. K. Akeley. RealityEngine Graphics. SIGGRAPH 1993, pp. 109-116.

3. J. P. Allebach. Selected Papers on Digital Halftoning. SPIE The
International Society for Optical Engineering, 1999.

4. C. B. Barber, D. P. Dobkin and H. Huhdanpaa. The Quickhull
Algorithm for Convex Hulls. ACM Transaction on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, pp. 469-483.

5. L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method.
SIGGRAPH 1984, pp. 103-108.

6. E. Catmull, A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, 1974.

7. S. Coorg and S. Teller. Temporally Coherent Conservative Visibility.
Symposium on Computationa Geometry 1996, pp. 78-87.

8. S. Coorg and S. Teller. Real-time Occlusion Culling for Models with
Large Occluders. Symposium on Interactive 3D Graphics 1997, pp. 83-
90.

9. X. Decoret, G. Schaufler, F. Sillion and J. Dorsey. Multi-layered
Imposters for Accelerated Rendering. Eurographics 1999, pp. C63-C72.

10. R. Floyd and L. Steinberg. An Adaptive Algorithm for Spatial Grey Scale.
Proceedings of the Society for Information Display, Vol. 17, 1976,
pp.75.

11. J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hughes. Computer
Graphics – Principles and Practice. Addison-Wesley Publishing
Company 1996.

12. H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin, F. P.
Brooks, Jr., J. G. Eyles and J. Poulton. Fast Spheres, Shadows, Textures,
Transparencies, and Image Enhancements in Pixel-Planes. SIGGRAPH
1985, pp. 111-120.

Chapter 8. References
 65

13. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible Surface
Generation by A Priori Tree Structures. SIGGRAPH 1980, pp. 124-133.

14. N. Greene, M. Kass and G. Miller. Hierarchical Z-Buffer Visibility.
SIGGRAPH 1993, pp. 231-238.

15. N. Greene. Hierarchical Polygon Tiling with Coverage Masks.
SIGGRAPH 1996, pp. 65-74.

16. P. Haeberli and K. Akeley. The Accumulation Buffer: Hardware
Support for High-Quality Rendering. SIGGRAPH 1990, pp. 309-318.

17. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff and H. Zhang.
Accelerated Occlusion Culling using Shadow Frusta. Computational
Geometry 1997, pp. 1-10.

18. N. P. Jouppi and C. F. Chang. Z3: An Economical Hardware Technique
for High-Quality Antialiasing and Transparancy. Eurographics 1999,
pp. 85-143.

19. H. R. Kang. Digital Color Halftoning. IEEE Press, 1999.

20. M. Kelly, K. Gould, B. Pease, S. Winner and A. Yen. Hardware
Accelerated Rendering of CSG and Transparency. SIGGRAPH 1994, pp.
177-184.

21. D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast
Evaluation of Potential Visible Sets. Symposium on Interactive 3D
Graphics, 1997, pp. 105-106.

22. A. Mammem. Transparency and Antialiasing Algorithms Implemented
with the Virtual Pixel Maps Technique. Computer Graphics and
Applications 1989, pp. 43-55.

23. J. L. Mannos and D. J. Sakrison. The Effects of a Visual Fidelity
Criterion on the Encoding of Images. IEEE Trans. Inf. Theory, Vol. IT-
20, 1974, pp. 525-536.

24. T. Mitsa and K. J. Parker. Digital Halftoning Technique using a Blue
Noise Mask. Journal of the Optical Society of America A, Vol. 9(11),
Nov. 1992, pp. 1920-1929.

25. J. S. Montrym, D. R. Baum, D. L. Dignam and C. J. Migdal.
InfiniteReality: A Real-Time Graphics System. Computer Graphics and
Interactive Techniques 1997, pp. 293-302.

26. J. D. Mulder, F. C. A. Groen and J. J. van Wijk. Pixel Masks for Screen-
Door Transparency. IEEE Visualization 1998, pp. 351-358.

Chapter 8. References
 66

27. K. Mulmuley. An Efficient Algorithm for Hidden Surface Removal.
SIGGRAPH 1989, pp. 379-388.

28. B. Naylor. Partitioning Tree image Representation and Generation
from 3D Geometric Models. Graphics Interface 1992, pp. 201-211.

29. C. H. Poon and Wenping Wang. Occlusion Culling Using Minimum
Occluder Set and Opacity Map. IEEE Information Visualization 1999,
pp. 292-300.

30. T. Porter and T. Duff. Compositing Digital Images. SIGGRAPH 1984,
pp. 253-259.

31. A. Schilling and W. Straβer. EXACT: Algorithm and Hardware
Architecture for an Improved A-Buffer. SIGGRAPH 1993, pp. 85-91.

32. R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study for
Applying Computer-Generated Images to Visual Simulation. Technical
Report AFHRL-TR-69-14. 1969.

33. F. Sillion, G. Drettakis, B. Bodelet. Efficient Impostor Manipulation for
Real-Time visualization of Urban Scenery. Eurographics 1997, pp. 207-
218.

34. J. Snyder and J. Lengyel. Visibility Sorting and Compositing without
Splitting for Image Layer Decomposition. SIGGRAPH 1998, pp. 219-
230.

35. S. Teller and C.H. Sequin. Visibility Pre-processing for Interactive
Walkthroughs. SIGGRAPH 1991, pp. 61-69.

36. E. Torres. Optimization of the Binary Space Partition Algorithm for the
Visualization of Dynamic Scenes. Eurographics 1990, pp. 507-518.

37. R. Ulichney. Digital Halftoning. MIT Press, 1988.

38. S. Winner, M. Kelley, B. Pease, B. Rivard and A. Yen. Hardware
Accelerated Rendering of Antialiasing Using A Modified A-buffer
Algorithm. Computer Graphics and Interactive Techniques 1997, pp.
307-316.

39. P. Wonka and D. Schmalstieg. Occluder Shadows for Fast
Walkthroughs of Urban Environments. Eurographics 1999, pp. C51-
C60.

40. H. Zhang, D. Manocha, T. Hudson and K. E. Hoff III. Visibility Culling
using Hierarchical Occlusion Maps. SIGGRAPH 1997, pp. 77-88.

	Chun-Ho Poon - cover.pdf
	Chun-Ho Poon - abs.pdf
	Chun-Ho Poon - con.pdf
	Chun-Ho Poon - body.pdf
	Acknowledgement
	Declaration
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Difficulties
	Occlusion Culling
	Non-Refractive Transparency

	Contributions
	Overview of This Thesis

	Related Work
	Hidden Surface Removal
	Non-Refractive Transparency Rendering

	Occlusion Culling
	Overview
	Minimum Occluder Set Algorithm
	Construction of Occluder Stack
	Generation of Minimum Occluder Set
	Scoring and Selecting

	Occlusion Culling
	Opacity Map
	Overlap Test
	Sparse Depth Map
	Depth Comparison

	Non-Refractive Transparency Rendering
	Overview
	Precise Mask Generation
	Binary Tree Approach – Pixel Tree Mask
	Error Comparison
	Computational Complexity
	Feasibility

	Tabular Pixel Mask Generation
	Structure of Mask Table
	Mask Generation by Table Rolling
	Neighborhood Error Compensation
	Computational Complexity

	Experiments and Applications
	Experimental Result
	Occlusion Culling on A Walkthrough System
	MOS Algorithm
	Occlusion Culling

	Tabular Pixel Mask Generation with Random Test Data

	Application Performance – Virtual Brain
	Occlusion Culling
	Tabular Pixel Mask Generation

	Virtual Brain
	Conclusion and Future Works
	References
	Appendix
	Chicago City Model
	Virtual Brain Screen Snapshot

	Chun-Ho Poon - bib.pdf

